
5/6/15

1

1

CSE 444: Database Internals

Lectures 17-19
Transactions: Recovery

CSE 444 - Spring 2015

The Usual Reminders

•  HW3 is due today

•  Lab 3 is due on Monday

•  HW5 and Lab 5 due shortly after!

CSE 444 - Spring 2015 2

Readings for Lectures 17-19

Main textbook (Garcia-Molina)
•  Ch. 17.2-4, 18.1-3, 18.8-9
Second textbook (Ramakrishnan)
•  Ch. 16-18
Also: M. J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science
and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.

CSE 444 - Spring 2015 3

Transaction Management
Two parts:
•  Concurrency control: ACID
•  Recovery from crashes: ACID

We already discussed concurrency control
 You are implementing locking in lab3

Today, we start recovery

CSE 444 - Spring 2015 4

5

System Crash

Client 1:
BEGIN TRANSACTION
UPDATE Account1
SET balance= balance – 500

UPDATE Account2
SET balance = balance + 500
COMMIT

Crash !

CSE 444 - Spring 2015 6

Recovery
Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy:
e.g. RAID, archive

Data center failures Remote backups or
replicas

System failures:
e.g. power

DATABASE
RECOVERY

5/6/15

2

System Failures

•  Each transaction has internal state

•  When system crashes, internal state is lost
–  Don’t know which parts executed and which didn’t
–  Need ability to undo and redo

CSE 444 - Spring 2015 7

Buffer Manager Review

8

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk = collection
of blocks

Buffer pool manager
Files and access methods

READ
WRITE

INPUT
OUTPUT

choice of frame dictated
by replacement policy

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

•  Enables higher layers of the DBMS to
assume that needed data is in main memory

•  Caches data in memory. Problems when
crash occurs:
–  If committed data was not yet written to disk
–  If uncommitted data was flushed to disk

CSE 444 - Spring 2015 9 10

Transactions

•  Assumption: the database is composed
of elements.

•  1 element can be either:
– 1 page = physical logging
– 1 record = logical logging

•  Aries uses both (will discuss later)

CSE 444 - Spring 2015

11

Primitive Operations of
Transactions

•  READ(X,t)
–  copy element X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to element X

•  INPUT(X)
–  read element X to memory buffer

•  OUTPUT(X)
–  write element X to disk

CSE 444 - Spring 2015 12

Running Example

Initially, A=B=8.

Atomicity requires that either
(1) T commits and A=B=16, or
(2) T does not commit and A=B=8.

CSE 444 - Spring 2015

BEGIN TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t)
COMMIT;

5/6/15

3

13

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t)

CSE 444 - Spring 2015

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Is this bad ?

CSE 444 - Spring 2015 14

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ? Yes it’s bad: A=16, B=8….

CSE 444 - Spring 2015 15

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

Is this bad ?

CSE 444 - Spring 2015 16

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ? Yes it’s bad: A=B=16, but not committed

CSE 444 - Spring 2015 17

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT
Crash !

Is this bad ?

CSE 444 - Spring 2015 18

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

5/6/15

4

Is this bad ? No: that’s OK

CSE 444 - Spring 2015 19

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT

Crash !

OUTPUT can also happen after COMMIT (details coming)

CSE 444 - Spring 2015 20

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

OUTPUT can also happen after COMMIT (details coming)

CSE 444 - Spring 2015 21

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Crash !

Atomic Transactions

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to

disk before the transaction commits?
•  STEAL or NO-STEAL

–  Can an update made by an uncommitted
transaction overwrite the most recent committed
value of a data item on disk?

CSE 444 - Spring 2015 22

Force/No-steal

•  FORCE: Pages of committed
transactions must be forced to disk
before commit

•  NO-STEAL: Pages of uncommitted
transactions cannot be written to disk

CSE 444 - Spring 2015 23

Easy to implement (how?) and ensures atomicity

No-Force/Steal

•  NO-FORCE: Pages of committed
transactions need not be written to disk

•  STEAL: Pages of uncommitted
transactions may be written to disk

CSE 444 - Spring 2015 24

In either case, need a Write Ahead Log (WAL)
to provide atomicity in face of failures

5/6/15

5

25

Write-Ahead Log (WAL)
The Log: append-only file containing log records
•  Records every single action of every TXN
•  Forces log entries to disk as needed
•  After a system crash, use log to recover
Three types: UNDO, REDO, UNDO-REDO
Aries: is an UNDO-REDO log

CSE 444 - Spring 2015

Policies and Logs

CSE 444 - Spring 2015 26

NO-STEAL STEAL
FORCE Lab 3 Undo Log
NO-FORCE Redo Log Undo-Redo Log

UNDO Log

CSE 444 - Spring 2015 27

FORCE and STEAL

28

Undo Logging
Log records
•  <START T>

–  transaction T has begun
•  <COMMIT T>

–  T has committed
•  <ABORT T>

–  T has aborted
•  <T,X,v>

–  T has updated element X, and its old value was v
–  Idempotent, physical log records

CSE 444 - Spring 2015

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

5/6/15

6

31
WHAT DO WE DO ?

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

We UNDO by setting B=8 and A=8

Crash !

32

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

What do we do now ? Crash ! Nothing: log contains COMMIT

After Crash
•  In the first example:

–  We UNDO both changes: A=8, B=8
–  The transaction is atomic, since none of its actions have

been executed

•  In the second example
–  We don’t undo anything
–  The transaction is atomic, since both it’s actions have been

executed

CSE 444 - Spring 2015 34

Recovery with Undo Log

After system’s crash, run recovery manager

•  Decide for each transaction T whether it is
completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Undo all modifications by incomplete
transactions

CSE 444 - Spring 2015 35

Recovery with Undo Log

Recovery manager:
•  Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed
 then write X=v to disk
 else ignore
<START T>: ignore

CSE 444 - Spring 2015 36

5/6/15

7

37

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?

Question 3:
What happens if second
crash during recovery?

Crash ! 38

Recovery with Undo Log
…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1: Which updates
are undone ?

Question 2:
How far back do we need to
read in the log ?
To the beginning.

Question 3:
What happens if second
crash during recovery?
No problem! Log records are
idempotent. Can reapply.

Crash !

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

When must
we force pages
to disk ?

39 40

Action t Mem A Mem B Disk A Disk B UNDO Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

RULES: log entry before OUTPUT before COMMIT

FORCE

41

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be
written to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must

be written to disk before <COMMIT T>

•  Hence: OUTPUTs are done early,

before the transaction commits
CSE 444 - Spring 2015

FORCE

Checkpointing

Checkpoint the database periodically
•  Stop accepting new transactions
•  Wait until all current transactions

complete
•  Flush log to disk
•  Write a <CKPT> log record, flush
•  Resume transactions

CSE 444 - Spring 2015 42

5/6/15

8

Undo Recovery with
Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

 transactions T2,T3,T4,T5

 other transactions

43

Nonquiescent Checkpointing

•  Problem with checkpointing: database
freezes during checkpoint

•  Would like to checkpoint while database
is operational

•  Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

CSE 444 - Spring 2015 44

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active
transactions. Flush log to disk

•  Continue normal operation

•  When all of T1,…,Tk have completed,
write <END CKPT>. Flush log to disk

CSE 444 - Spring 2015 45

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: why do we need
<END CKPT> ? 46

Undo Recovery with
Nonquiescent Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: why do we need
<END CKPT> Not really 47

Implementing ROLLBACK
•  Recall: a transaction can end in COMMIT

or ROLLBACK
•  Idea: use the undo-log to implement

ROLLBACK
•  How ?

– LSN = Log Sequence Number
– Log entries for the same transaction are

linked, using the LSN’s
– Read log in reverse, using LSN pointers

CSE 444 - Spring 2015 48

5/6/15

9

REDO Log

CSE 444 - Spring 2015 49

NO-FORCE and NO-STEAL

50

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Spring 2015

51

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? Yes, it’s bad: A=16, B=8

Crash !

CSE 444 - Spring 2015 52

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Spring 2015

53

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

Yes, it’s bad: lost update

CSE 444 - Spring 2015 54

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ?

Crash !

CSE 444 - Spring 2015

5/6/15

10

55

Action t Mem A Mem B Disk A Disk B

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

COMMIT

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Is this bad ? No: that’s OK.

Crash !

CSE 444 - Spring 2015 56

Redo Logging

One minor change to the undo log:

•  <T,X,v>= T has updated element X, and
its new value is v

CSE 444 - Spring 2015

57

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

CSE 444 - Spring 2015 58

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ?

Crash !

CSE 444 - Spring 2015

59

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

How do we recover ? We REDO by setting A=16 and B=16

Crash !

Recovery with Redo Log

After system’s crash, run recovery manager
•  Step 1. Decide for each transaction T whether

it is committed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = no
–  <START T>……………………… = no

•  Step 2. Read log from the beginning, redo all
updates of committed transactions

CSE 444 - Spring 2015 60

5/6/15

11

61

Recovery with Redo Log
<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>

CSE 444 - Spring 2015

Show actions
during recovery

Crash !

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active txn’s

•  Flush to disk all blocks of committed
transactions (dirty blocks)

•  Meantime, continue normal operation
•  When all blocks have been written, write

<END CKPT>

CSE 444 - Spring 2015 62

Nonquiescent Checkpointing
…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use 63 64

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

When must
we force pages
to disk ?

CSE 444 - Spring 2015

65

Action t Mem A Mem B Disk A Disk B REDO Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

COMMIT <COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

RULE: OUTPUT after COMMIT

NO-STEAL

66

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk
before OUTPUT(X)

•  Hence: OUTPUTs are done late

CSE 444 - Spring 2015

NO-STEAL

5/6/15

12

67

Comparison Undo/Redo

• Undo logging: OUTPUT must be
done early:
– Inefficient

• Redo logging: OUTPUT must be
done late:
– Inflexible

CSE 444 - Spring 2015

Comparison Undo/Redo
•  Undo logging:

–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its data to

disk (hence, don’t need to redo) – inefficient
•  Redo logging

–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not written any

of its data to disk (hence there is not dirty data on disk, no
need to undo) – inflexible

•  Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

CSE 444 - Spring 2015 68

Steal/Force

No-Steal/No-Force

Steal/No-Force

Undo/Redo Logging

Log records, only one change
•  <T,X,u,v>= T has updated element X, its

old value was u, and its new value is v

CSE 444 - Spring 2015 69

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must
be written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late

relative to <COMMIT T>

CSE 444 - Spring 2015 70

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT 71

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
•  Redo all committed transaction, top-down
•  Undo all uncommitted transactions, bottom-up

CSE 444 - Spring 2015 72

5/6/15

13

Recovery with Undo/Redo Log

CSE 444 - Spring 2015 73

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

ARIES

CSE 444 - Spring 2015 74

75

Aries

•  ARIES pieces together several
techniques into a comprehensive
algorithm

•  Developed at IBM Almaden, by Mohan
•  IBM botched the patent, so everyone

uses it now
•  Several variations, e.g. for distributed

transactions

CSE 444 - Spring 2015

Log Granularity
Two basic types of log records for update operations
•  Physical log records

–  Position on a particular page where update occurred
–  Both before and after image for undo/redo logs
–  Benefits: Idempotent & updates are fast to redo/undo

•  Logical log records
–  Record only high-level information about the operation
–  Benefit: Smaller log
–  BUT difficult to implement because crashes can occur in

the middle of an operation

CSE 444 - Spring 2015 76

Granularity in ARIES

•  Physiological logging
–  Log records refer to a single page
–  But record logical operation within the page

•  Page-oriented logging for REDO
–  Necessary since can crash in middle of complex op.

•  Logical logging for UNDO
–  Enables tuple-level locking!
–  Must do logical undo because ARIES will only undo

loser transactions (this also facilitates ROLLBACKs)
 CSE 444 - Spring 2015 77 78

ARIES Recovery Manager

Log entries:
•  <START T> -- when T begins
•  Update: <T,X,u,v>

–  T updates X, old value=u, new value=v
–  Logical description of the change

•  <COMMIT T> or <ABORT T> then <END>
•  <CLR> – we’ll talk about them later.

CSE 444 - Spring 2015

5/6/15

14

79

ARIES Recovery Manager

Rule:
•  If T modifies X, then <T,X,u,v> must be

written to disk before OUTPUT(X)

We are free to OUTPUT early or late

CSE 444 - Spring 2015 80

LSN = Log Sequence Number
•  LSN = identifier of a log entry

– Log entries belonging to the same TXN are linked

•  Each page contains a pageLSN:
– LSN of log record for latest update to that page

CSE 444 - Spring 2015

81

ARIES Data Structures
•  Active Transactions Table

–  Lists all active TXN’s
–  For each TXN: lastLSN = its most recent update LSN

•  Dirty Page Table
–  Lists all dirty pages
–  For each dirty page: recoveryLSN (recLSN)= first LSN

that caused page to become dirty
•  Write Ahead Log

–  LSN, prevLSN = previous LSN for same txn

CSE 444 - Spring 2015

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log (WAL)

transID lastLSN
T100 104
T200 103

Active transactions
P8 P2 . . .

. . .

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

WT100(P7)
WT200(P5)
WT200(P6)
WT100(P5)

82

83

ARIES Normal Operation

T writes page P
•  What do we do ?

CSE 444 - Spring 2015 84

ARIES Normal Operation

T writes page P
•  What do we do ?

•  Write <T,P,u,v> in the Log
•  pageLSN=LSN
•  prevLSN=lastLSN
•  lastLSN=LSN
•  recLSN=if isNull then LSN

CSE 444 - Spring 2015

5/6/15

15

85

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  What do we do ?

Buffer manager wants INPUT(P)
•  What do we do ?

CSE 444 - Spring 2015 86

ARIES Normal Operation

Buffer manager wants to OUTPUT(P)
•  Flush log up to pageLSN
•  Remove P from Dirty Pages table
Buffer manager wants INPUT(P)
•  Create entry in Dirty Pages table

recLSN = NULL

CSE 444 - Spring 2015

87

ARIES Normal Operation

Transaction T starts
•  What do we do ?

Transaction T commits/aborts
•  What do we do ?

CSE 444 - Spring 2015 88

ARIES Normal Operation

Transaction T starts
•  Write <START T> in the log
•  New entry T in Active TXN;

lastLSN = null
Transaction T commits
•  Write <COMMIT T> in the log
•  Flush log up to this entry
•  Write <END>

CSE 444 - Spring 2015

89

Checkpoints

Write into the log

•  Entire active transactions table
•  Entire dirty pages table

CSE 444 - Spring 2015

Recovery always starts by analyzing latest checkpoint

Background process periodically flushes dirty pages to disk

90

ARIES Recovery
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

CSE 444 - Spring 2015

5/6/15

16

91

ARIES Method Illustration

[Figure 3 from Franklin97]
CSE 444 - Spring 2015

First undo and first redo log entry might be
in reverse order

92

1. Analysis Phase
•  Goal

–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the checkpoint

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

CSE 444 - Spring 2015

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN= ??? Where do we start
the REDO phase ?

CSE 444 - Spring 2015 93

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

firstLSN=min(recLSN)

94

1. Analysis Phase
(crash) Checkpoint

Dirty
pages

Active
txn

Log

pageID recLSN pageID

transID lastLSN transID

pageID recLSN pageID

transID lastLSN transID

Replay
history

firstLSN

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from

firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

CSE 444 - Spring 2015 96

5/6/15

17

97

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  Re-do the action P=u and WRITE(P)
•  But which actions can we skip, for

efficiency ?

CSE 444 - Spring 2015 98

2. Redo Phase: Details

For each Log entry record LSN: <T,P,u,v>
•  If P is not in Dirty Page then no update
•  If recLSN > LSN, then no update
•  Read page from disk:

If pageLSN > LSN, then no update
•  Otherwise perform update

CSE 444 - Spring 2015

99

2. Redo Phase: Details

What happens if system crashes during
REDO ?

CSE 444 - Spring 2015 100

2. Redo Phase: Details

What happens if system crashes during
REDO ?

We REDO again ! The pageLSN will ensure

that we do not reapply a change twice

CSE 444 - Spring 2015

3. Undo Phase

•  Cannot “unplay” history, in the same
way as we “replay” history

•  WHY NOT ?

CSE 444 - Spring 2015 101

3. Undo Phase

•  Cannot “unplay” history, in the same
way as we “replay” history

•  WHY NOT ?
– Undo only the loser transactions
– Need to support ROLLBACK: selective

undo, for one transaction
•  Hence, logical undo v.s. physical redo

CSE 444 - Spring 2015 102

5/6/15

18

3. Undo Phase

Main principle: “logical” undo
•  Start from end of Log, move backwards
•  Read only affected log entries
•  Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

CSE 444 - Spring 2015 103

3. Undo Phase: Details
•  “Loser transactions” = uncommitted

transactions in Active Transactions Table

•  ToUndo = set of lastLSN of loser transactions

CSE 444 - Spring 2015 104

3. Undo Phase: Details

While ToUndo not empty:
•  Choose most recent (largest) LSN in ToUndo
•  If LSN = regular record <T,P,u,v>:

–  Undo v
–  Write a CLR where CLR.undoNextLSN = LSN.prevLSN

•  If LSN = CLR record:
–  Don’t undo !

•  if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END> in log

CSE 444 - Spring 2015 105 106

3. Undo Phase: Details

[Figure 4 from Franklin97]

CSE 444 - Spring 2015

107

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

CSE 444 - Spring 2015 108

3. Undo Phase: Details

What happens if system crashes during
UNDO ?

We do not UNDO again ! Instead, each CLR

is a REDO record: we simply redo the
undo

CSE 444 - Spring 2015

