
1

CSE 444: Database Internals

Lectures 15 and 16
Transactions: Optimistic

Concurrency Control

1 CSE 444 - Spring 2015

Pessimistic v.s. Optimistic

•  Pessimistic CC (locking)
–  Prevents unserializable schedules
–  Never abort for serializability (but may abort for deadlocks)
–  Best for workloads with high levels of contention

•  Optimistic CC (timestamp, multi-version, validation,
snapshot isolation)
–  Assume schedule will be serializable
–  Abort when conflicts detected
–  Best for workloads with low levels of contention

CSE 444 - Spring 2015 2

Outline

•  Concurrency control by timestamps (18.8)

•  Concurrency control by validation (18.9)

•  Snapshot Isolation

CSE 444 - Spring 2015 3

Timestamps

•  Each transaction receives unique timestamp TS(T)

Could be:

•  The system’s clock
•  A unique counter, incremented by the scheduler

CSE 444 - Spring 2015 4

Timestamps

CSE 444 - Spring 2015 5

The timestamp order defines
 the serialization order of the transaction

Main invariant:

Will generate a schedule that is view-equivalent
to a serial schedule, and recoverable

Timestamps

With each element X, associate
•  RT(X) = the highest timestamp of any

transaction U that read X

•  WT(X) = the highest timestamp of any
transaction U that wrote X

•  C(X) = the commit bit: true when transaction
with highest timestamp that wrote X
committed

6 CSE 444 - Spring 2015

2

Main Idea

For any rT(X) or wT(X) request, check for
conflicts:

•  wU(X) . . . rT(X)
•  rU(X) . . . wT(X)
•  wU(X) . . . wT(X)

CSE 444 - Spring 2015 7

How do we check
if Read too late ?

Write too
late ?

Main Idea

For any rT(X) or wT(X) request, check for
conflicts:

•  wU(X) . . . rT(X)
•  rU(X) . . . wT(X)
•  wU(X) . . . wT(X)

CSE 444 - Spring 2015 8

When T requests rT(X), need to check TS(U) ≤ TS(T)

How do we check
if Read too late ?

Write too
late ?

Read Too Late

•  T wants to read X

CSE 444 - Spring 2015 9

START(T) … START(U) … wU(X) . . . rT(X)

Read Too Late

•  T wants to read X

CSE 444 - Spring 2015 10

START(T) … START(U) … wU(X) . . . rT(X)

If WT(X) > TS(T) then need to rollback T !

Write Too Late

•  T wants to write X

CSE 444 - Spring 2015 11

START(T) … START(U) … rU(X) . . . wT(X)

Write Too Late

•  T wants to write X

CSE 444 - Spring 2015 12

START(T) … START(U) … rU(X) . . . wT(X)

 If RT(X) > TS(T) then need to rollback T !

3

Thomas’ Rule

But we can still handle it:
•  T wants to write X

START(T) … START(V) … wV(X) . . . wT(X)

If RT(X) ≤ TS(T) and WT(X) > TS(T)
then don’t write X at all !

CSE 444 - Spring 2015 13 Why does this work?

Thomas’ Rule

But we can still handle it:
•  T wants to write X

START(T) … START(V) … wV(X) . . . wT(X)

If RT(X) ≤ TS(T) and WT(X) > TS(T)
then don’t write X at all !

CSE 444 - Spring 2015 14 Why does this work?
View-serializable
schedule

View-Serializability

•  By using Thomas’ rule we do obtain a view-
serializable schedule

CSE 444 - Spring 2015 15

Summary So Far

Only for transactions that do not abort
Otherwise, may result in non-recoverable schedule

CSE 444 - Spring 2015 16

Transaction wants to read element X
If WT(X) > TS(T) then ROLLBACK
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule)
Otherwise, WRITE and update WT(X) =TS(T)

Ensuring Recoverable Schedules

Recall:
•  Schedule avoids cascading aborts if

whenever a transaction reads an element,
then the transaction that wrote it must have
already committed

•  Use the commit bit C(X) to keep track if the
transaction that last wrote X has committed

CSE 444 - Spring 2015 17

Ensuring Recoverable Schedules

Read dirty data:
•  T wants to read X, and WT(X) < TS(T)
•  Seems OK, but…

CSE 444 - Spring 2015 18

START(U) … START(T) … wU(X). . . rT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

4

Ensuring Recoverable Schedules

Thomas’ rule needs to be revised:
•  T wants to write X, and WT(X) > TS(T)
•  Seems OK not to write at all, but …

CSE 444 - Spring 2015 19

START(T) … START(U)… wU(X). . . wT(X)… ABORT(U)

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

•  When a transaction T requests rT(X) or wT(X),
the scheduler examines RT(X), WT(X), C(X),
and decides one of:

•  To grant the request, or
•  To rollback T (and restart with later timestamp)
•  To delay T until C(X) = true

CSE 444 - Spring 2015 20

Timestamp-based Scheduling

RULES including commit bit
•  There are 4 long rules in Sec. 18.8.4
•  You should be able to derive them yourself,

based on the previous slides
•  Make sure you understand them !

READING ASSIGNMENT: 18.8.4

CSE 444 - Spring 2015 21

Timestamp-based Scheduling
(Read 18.8.4 instead!)

CSE 444 - Spring 2015 22

Transaction wants to READ element X
If WT(X) > TS(T) then ROLLBACK
Else If C(X) = false, then WAIT
Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X
If RT(X) > TS(T) then ROLLBACK
Else if WT(X) > TS(T)

Then If C(X) = false then WAIT
 else IGNORE write (Thomas Write Rule)

Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

W3(A)

A

RT=0
WT=0 C=true
WT=2 C=false
RT=0

 C=true
RT=3
WT=4 C=false

WT=2 C=true
WT=3 C=false

T4

4

W4(A)

abort

CSE 444 - Spring 2015 23

Basic Timestamps with Commit Bit
T1

1

R1(A)
Abort

T2

2

W2(A)

C

T3

3

R3(A)
Delay

R3(A)

W3(A)
delay

W3(A)

A

RT=0
WT=0 C=true
WT=2 C=false
RT=0

 C=true
RT=3
WT=4 C=false

WT=2 C=true
WT=3 C=false

T4

4

W4(A)

abort

CSE 444 - Spring 2015 24

5

Summary of Timestamp-based
Scheduling

•  View-serializable

•  Avoids cascading aborts (hence: recoverable)

•  Does NOT handle phantoms
–  These need to be handled separately, e.g.

predicate locks

CSE 444 - Spring 2015 25

Multiversion Timestamp

•  When transaction T requests r(X)
but WT(X) > TS(T), then T must rollback

•  Idea: keep multiple versions of X:
Xt, Xt-1, Xt-2, . . .

CSE 444 - Spring 2015 26

TS(Xt) > TS(Xt-1) > TS(Xt-2) > . . .

Details

•  When wT(X) occurs,
 if the write is legal then

 create a new version, denoted Xt where t = TS(T)

•  When rT(X) occurs,
 find most recent version Xt such that t < TS(T)
 Notes:

–  WT(Xt) = t and it never changes
–  RT(Xt) must still be maintained to check legality of writes

•  Can delete Xt if we have a later version Xt1 and all active
transactions T have TS(T) > t1 27

Example (in class)

CSE 444 - Spring 2015 28

X3 X9 X12 X18

R6(X) -- Read X3

W21(X) – Check read timestamp of X18
R15(X) – Read X12

W5(X) – Check read timestamp of X3

When can we delete X3?

Example w/ Basic Timestamps
T1

150

R1(A)
W1(A)

T2

200

R2(A)
W2(A)

T3

175

R3(A)
Abort

A

RT=0
WT=0
RT=150
WT=150
RT=200
WT=200

RT=225

T4

225

R4(A)

CSE 444 - Spring 2015 29

Example w/ Multiversion
T1

150

R1(A)
W1(A)

T2

200

R2(A)
W2(A)

T3

175

R3(A)
W3(A)
abort

A0

RT=150

T4

225

R4(A)

A150

Create
RT=200

RT=200

A200

Create

RT=225

 CSE 444 - Spring 2015 30

6

T5

5

R5(A)
W5(A)

Second Example w/ Multiversion
T1

1

W1(A)

R1(A)
C

T2

2

R2(A)

W2(A)
abort

T3

3

R3(A)

C

A0

X

T4

4
W4(A)

R4(A)

A1

Create
RT=2
RT=3

RT=3

X

A2

CSE 444 - Spring 2015 31

A3

A4

Create

RT=5

RT=4

A5

Create

Second Example w/ Multiversion
T1

1

W1(A)

R1(A)
C

T2

2

R2(A)

W2(A)
abort

T3

3

R3(A)

C

A0

X

T4

4
W4(A)

R4(A)

A1

Create
RT=2
RT=3

RT=3

X

A2

CSE 444 - Spring 2015 32

A3

A4

Create

RT=5

RT=5

A5

Create

T5

5

R5(A)
W5(A)

Outline

•  Concurrency control by timestamps (18.8)
•  Concurrency control by validation (18.9)
•  Snapshot Isolation

CSE 444 - Spring 2015 33

Concurrency Control by
Validation

•  Each transaction T defines:
–  Read set RS(T) = the elements it reads
–  Write set WS(T) = the elements it writes

•  Each transaction T has three phases:
–  Read phase; time = START(T)
–  Validate phase (may need to rollback); time = VAL(T)
–  Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)
CSE 444 - Spring 2015 34

Avoid rT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate ?

START(T)
IF RS(T) ∩ WS(U) and FIN(U) > START(T)
 (U has validated and U has not finished before T begun)
Then ROLLBACK(T)

conflicts

VAL(T)

CSE 444 - Spring 2015 35

Avoid wT(X) - wU(X) Conflicts

U: Read phase Validate Write phase

START(U) VAL(U) FIN(U)

T: Read phase Validate Write phase ?

START(T) VAL(T)
IF WS(T) ∩ WS(U) and FIN(U) > VAL(T)
 (U has validated and U has not finished before T validates)
Then ROLLBACK(T)

conflicts

CSE 444 - Spring 2015 36

7

Outline

•  Concurrency control by timestamps (18.8)
•  Concurrency control by validation (18.9)
•  Snapshot Isolation

–  Not in the book, but good overview in Wikipedia
–  Better: pay attention in class!

CSE 444 - Spring 2015 37

Snapshot Isolation

•  A type of multiversion concurrency control algorithm
•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…
•  Not serializable (!), yet ORACLE and PostgreSQL use it

even for SERIALIZABLE transactions!
–  But “serializable snapshot isolation” now in PostgreSQL

38 CSE 444 - Spring 2015

Snapshot Isolation Overview

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the database

•  Write/write conflicts resolved by “first committer wins” rule
–  Loser gets aborted

•  Read/write conflicts are ignored

•  When T commits, its dirty pages are written to disk
CSE 444 - Spring 2015 39

Snapshot Isolation Details

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).
•  When T writes X (to avoid lost update):

–  If latest version of X is TS(T) then proceed
–  If C(X) = true then abort
–  If C(X) = false then wait

•  When T commits, write its updates to disk

CSE 444 - Spring 2015 40

What Works and What Not

•  No dirty reads (Why ?)
•  No inconsistent reads (Why ?)
•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

CSE 444 - Spring 2015 41

Write Skew

42

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

CSE 444 - Spring 2015

8

Write Skews Can Be Serious

•  Acidicland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had high taxes and low spending…

43

Delta:
 READ(taXes);
 if taXes = ‘High’
 then { spendYng = ‘Raise’;
 WRITE(spendYng) }
 COMMIT

Rho:
 READ(spendYng);
 if spendYng = ‘Low’
 then {taXes = ‘Cut’;
 WRITE(taXes) }
 COMMIT

… and they ran a deficit ever since.

Discussion: Tradeoffs

•  Pessimistic CC: Locks
–  Great when there are many conflicts
–  Poor when there are few conflicts

•  Optimistic CC: Timestamps, Validation, SI
–  Poor when there are many conflicts (rollbacks)
–  Great when there are few conflicts

•  Compromise
–  READ ONLY transactions → timestamps
–  READ/WRITE transactions → locks

CSE 444 - Spring 2015 44

45

Commercial Systems
Always check documentation!
•  DB2: Strict 2PL
•  SQL Server:

–  Strict 2PL for standard 4 levels of isolation
–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL: SI; recently: seralizable SI (!)
•  Oracle: SI

CSE 444 - Spring 2015

