CSE 444: Database Internals

Lectures 13
Transaction Schedules

CSE 444 - Spring 2015

Announcements

* Lab 2 is due TODAY

— Lab 3 will be released tomorrow, part 1 due next
Monday

* HW4 is due on Wednesday
— HWS3 has been released, due next week

* 544M: Paper 3 reading is due TODAY
— Papers 4 and 5 are due on same day in a few weeks
— Write-up should be 2 to 3 pages long since 2 papers

CSE 444 - Spring 2015 2

Motivating Example

Client 1:

UPDATE Budget Client 2:

SET money=money-100 SELECT sum(money)
WHERE pid = 1 FROM Budget

UPDATE Budget
SET money=money+60
WHERE pid = 2

Would like to treat
each group of
instructions as a unit

UPDATE Budget
SET money=money+40
WHERE pid = 3

CSE 444 - Spring 2015 3

Transaction

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

May be omitted if
autocommit is off:
first SQL query
starts txn

BEGIN TRANSACTION
[SQL statements]

COMMIT or ROLLBACK (=ABORT)

In ad-hoc SQL.: each statement = one transaction

This is referred to as autocommit
CSE 444 - Spring 2015 4

Motivating Example

START TRANSACTION

UPDATE Budget EEB"EMC; S:’“&’""”‘*Y) I
SET money=money-100 udge

each SQL command
is a transaction

WHERE pid = 1

UPDATE Budget

SET money=money+60 With autocommit and

WHERE pid = 2 without START TRANSACTION,

UPDATE Budget

SET money=money+40
WHERE pid = 3
COMMIT (or ROLLBACK)

CSE 444 - Spring 2015 5

Transactions

* Major component of database systems

« Critical for most applications; arguably more so
than SQL

» Turing awards to database researchers:
— Charles Bachman 1973
— Edgar Codd 1981 for inventing relational dbs
— Jim Gray 1998 for inventing transactions

— Mike Stonebraker 2015 for INGRES and Postgres
» And many other ideas after that

CSE 444 - Spring 2015 6

ROLLBACK

+ If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

» This causes the system to “abort” the
transaction

— Database returns to a state without any of the
changes made by the transaction

+ Several reasons: user, application, system

CSE 444 - Spring 2015 7

ACID Properties

Atomicity: Either all changes performed by
transaction occur or none occurs

Consistency: A transaction as a whole does not
violate integrity constraints

Isolation: Transactions appear to execute one
after the other in sequence

Durability: If a transaction commits, its changes
will survive failures

CSE 444 - Spring 2015 8

What Could Go Wrong?

Why is it hard to provide ACID properties?

» Concurrent operations
— Isolation problems
— We saw one example earlier

» Failures can occur at any time
— Atomicity and durability problems
— Later lectures

» Transaction may need to abort

CSE 444 - Spring 2015 9

Different Types of Problems

Client 1: INSERT INTO SmallProduct(name, price)
SELECT pname, price
FROM Product
WHERE price <= 0.99

DELETE Product
WHERE price <=0.99

Client 2: SELECT count(*)
FROM Product

SELECT count(*)
FROM SmallProduct

What could go wrong ? Inconsistent reads
CSE 444 - Spring 2015 10

Different Types of Problems

Client 1:
UPDATE Product
SET Price = Price — 1.99
WHERE pname = ‘Gizmo’

Client 2:
UPDATE Product
SET Price = Price*0.5
WHERE pname=‘Gizmo’

What could go wrong ? Lost update

CSE 444 - Spring 2015 1

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
WHERE Account.number = ‘my-account’

Aborted by
system
Client 2: SELECT Account.amount
FROM Account
WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

CSE 444 - Spring 2015 12

Types of Problems: Summary

» Concurrent execution problems

— Write-read conflict: dirty read (includes inconsistent read)

A transaction reads a value written by another transaction that
has not yet committed

— Read-write conflict: unrepeatable read

« A transaction reads the value of the same object twice. Another
transaction modifies that value in between the two reads

— Write-write conflict: lost update

» Two transactions update the value of the same object. The
second one to write the value overwrite the first change

* Failure problems
— DBMS can crash in the middle of a series of updates

— Can leave the database in an inconsistent state
CSE 444 - Spring 2015 13

Terminology Needed For Lab 3
Buffer Manager Policies

STEAL or NO-STEAL

— Can an update made by an uncommitted transaction overwrite
the most recent committed value of a data item on disk?

FORCE or NO-FORCE

— Should all updates of a transaction be forced to disk before the
transaction commits?

Easiest for recovery: NO-STEAL/FORCE (lab 3)
Highest performance: STEAL/NO-FORCE (lab 5)
We will get back to this next week

CSE 444 - Spring 2015 14

Outline

» Transactions motivation, definition, properties

» Concurrency Control (the C in ACID)
— This week

* Recovery from failures (the A in ACID)

Schedules

A schedule is a sequence
of interleaved actions
from all transactions

CSE 444 - Spring 2015 16

— Next week
CSE 444 - Spring 2015 15
A and B are elements
Examp|e in the database
tand s are variables
in tx source code
T1 T2

READ(A,t) READ(A, s)
t:=t+100 s:=8*2
WRITE(A,t) WRITE(A,s)
READ(B,t) READ(B,s)
t:=t+100 s :=8*2
WRITE(B,t) WRITE(B,s)

CSE 444 - Spring 2015 17

A Serial Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)

READ(B, t)

t:=t+100

WRITE(B,t)
READ(A,s)
s =82
WRITE(A,s)
READ(B,s)
s =82
WRITE(B,s)

CSE 444 - Spring 2015 18

Serializable Schedule

A schedule is serializable if it is
equivalent to a serial schedule

CSE 444 - Spring 2015 19

A Serializable Schedule

T T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
s:=8*2
WRITE(A,s)
READ(B, t)
t:=t+100
WRITE(B,t)
READ(B,s)
This is a serializable schedule. s:=8*2
This is NOT a serial schedule WRITE(B,s)
CSE 444 - Spring 2015 20

A Non-Serializable Schedule

T1 T2

READ(A, t)

t:=t+100

WRITE(A, t)
READ(A,s)
s =82
WRITE(A,s)
READ(B,s)
s:=s*2
WRITE(B,s)

READ(B, t)

t:=t+100

WRITE(B,t)

Why is it
non-serializable?

CSE 444 - Spring 2015

Serializable Schedules

* The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

CSE 444 - Spring 2015 22

Serializable Schedules

* The role of the scheduler is to ensure that the
schedule is serializable

Q: Why not run only serial schedules ?
l.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

CSE 444 - Spring 2015 23

Still Serializable, but...

T1 T2
READ(A, t)
t:=t+100
WRITE(A, t)
READ(A,s)
Schedule i_s serializable \SN';I.SFE('Z,\OSO)
because t=t+100 and READ(B,s)
s=s+200 commute s:=s + 200
WRITE(B,s)

READ(B, t)
t:= t+100
WRITE(B,1)

...we don’t expect the scheduler to schedule this

Ignoring Details

» Assume worst case updates:
— We never commute actions done by transactions

» As a consequence, we only care about reads and
writes
— Transaction = sequence of R(A)’'s and W(A)'s

Ty r4(A); wq(A); 14(B); wy(B)
To: rp(A); Wy(A); 1o(B); wy(B)

N
3]

CSE 444 - Spring 2015

Conflicts

* Write-Read — WR
* Read-Write — RW
* Write-Write — WW

CSE 444 - Spring 2015 26

Conflict Serializability

Conflicts:

Two actions by same transaction T;:

= =
X R
S P
Sl S

Two writes by T;, TJ- to same element

wi(X); r(X)
r(X); wi(X)

Read/write by T;, T, to same element

N

CSE 444 - Spring 2015 7

Conflict Serializability

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings

of adjacent non-conflicting actions

 Every conflict-serializable schedule is serializable
» The converse is not true in general

CSE 444 - Spring 2015 28

Conflict Serializability

Example:
[14(A); W(A); 1,(A); Wo(A); 14(B); Wy(B); 1y

o

); Wo(B) |

N
3

CSE 444 - Spring 2015

Conflict Serializability

Example:
[13(A); W(A); 1,(A); Wo(A); 11(B); Wy(B); r,(B); W(B) |
<

[13(A); w;(A); 11(B); W4(B); r(A); W(A); ry(B); Wy(B) |

CSE 444 - Spring 2015 30

Conflict Serializability

Example:
[r4(A); W(A); ry(A); Wo(A); r4(B); W4(B); ry(B); W,(B) |

[r3(A); W, (A); 14(B); Wy(B); rp(A); Wo(A); 1o(B); W,(B) |

CSE 444 - Spring 2015 31

Conflict Serializability

Example:
[r1(A); W(A); ry(A); Wo(A); 14(B)] Wy(B); ry(B); W(B) |

[r1(A); W1 (A)[ro(A); r1(B); Wo(A); w4(B); ro(B); Wo(B) |
<

[13(A); w;(A); 15(B); W4(B); r(A); W(A); ry(B); Wy(B) |

CSE 444 - Spring 2015 32

Conflict Serializability

Example:
[r4(A); W(A); r,(A); W,(A); 14(B); W4(B); r,(B); W,(B) |

[14(A); W4 (A); 15(A); 14(B); [Wy(A); W4(B); 15(B); Wy(B) |
‘r1(A)§ W4 (A); r1(B); ro(A); Wo(A); wy(B); ry(B); wy(B) I
A4

‘r1(A); W4(A); 11(B); W4(B); rp(A); Wo(A); ry(B); wy(B) I

Testing for Conflict-Serializability

Precedence graph:
* A node for each transaction T;,

* An edge from T; to T; whenever an action in T,
conflicts with, and comes before an action in T,

» The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Spring 2015 34

CSE 444 - Spring 2015 33

Example 1

ro(A); r1(B); Wo(A); r3(A); w4(B); Wa(A); r5(B); Wo(B)

@ @ ®

CSE 444 - Spring 2015 35

Example 1

N

ro(A); r1(B); Wo(A); r3(A); W4(B); Wa(A); 15(B); Wo(B)

—
CBCAO

‘This schedule is conflict-serializable

CSE 444 - Spring 2015 36

Example 2

ro(A); 11(B); Wo(A); ro(B); r3(A); w,(B); Wa(A); wo(B)

Example 2

T

@ @ ®

CSE 444 - Spring 2015 37

ro(A); r1(B); Wo(A); ra(B); r3(A); w(B); W3(A); Wo(B)

S~
m
B

‘This schedule is NOT conflict-serializable

CSE 444 - Spring 2015 38

View Equivalence

A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

[w,(X); Wo(X); Wo(Y); w4 (Y); wy(Y); |

\ Is this schedule conflict-serializable ? \

CSE 444 - Spring 2015 39

View Equivalence

« A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

(W, (X); Wo(X); Wo(Y); wy(Y); wa(Y); |

Is this schedule conflict-serializable ? |

CSE 444 - Spring 2015 40

View Equivalence

A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

‘W1(X)3 Wzg); W,(Y); W4 (Y); Wa(Y); I

Lost write

w4 (X); wy(Y); wo(X); wo(Y); ws(Y); |

‘Equivalent, but not conﬂict-equivalent‘ “t

View Equivalence

1 T2 T3 T1 T2 T3
W1(X) W1(X)
W2(X) WA1(Y)
W(Y) co1
co2 |:> W2(X)
W1(Y) W2(Y)
CO1 co2
W3(Y) W3(Y)
CO3 co3

‘ Serializable, but not conflict serializable |+«

View Equivalence

Two schedules S, S’ are view equivalent if:

If T reads an initial value of Ain S,
then T reads the initial value of Ain S’

If T reads a value of A written by T"in S,
then T reads a value of A written by T’ in S’

If T writes the final value of Ain S,
then T writes the final value of Ain S’

CSE 444 - Spring 2015 43

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:

« |If a schedule is conflict serializable,
then it is also view serializable

« But not vice versa

CSE 444 - Spring 2015 44

Schedules with Aborted Transactions

* When a transaction aborts, the recovery
manager undoes its updates

+ But some of its updates may have affected
other transactions !

CSE 444 - Spring 2015 45

Schedules with Aborted Transactions

T1 T2
RA)
W(A)
R(A)
wia)
R(B)
W(B)
Commit

Abort

CSE 444 - Spring 2015 46

Schedules with Aborted Transactions

T1 T2
R(A)
W(A)
R(A)
WA
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

Recoverable Schedules

A schedule is recoverable if:
¢ ltis conflict-serializable, and

+ Whenever a transaction T commits, all
transactions who have written elements read
by T have already committed

CSE 444 - Spring 2015 48

Recoverable Schedules

T T2 T1 T2

R(A) R(A)

W(A) W(A)
R(A) R(A)
W(A) W(A)
R(B) R(B)
W(B) W(B)
Commit Commit

? Commit

Nonrecoverable Recoverable
CSE 444 - Spring 2015 49

Recoverable Schedules

T T2 T3 T4
R(A)
W(A)
R(A)
W(A)
R(B)
W(B)
R(B)
W(B)
R(C)
W(C)
R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Cascading Aborts

+ If a transaction T aborts, then we need to
abort any other transaction T’ that has read
an element written by T

* A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSE 444 - Spring 2015 51

T
RA)
W(A)

Avoiding Cascading Aborts

T2 T1 T2
R(A)
W(A)
R(A) Commit
W(A) R(A)
R(B) W(A)
W(B) R(B)

W(B)

With cascading aborts {

JWithout cascading aborts

- Sprirg

Review of Schedules

Serializability Recoverability
* Serial

» Serializable « Recoverable

+ Conflict serializable » Avoids cascading
- View serializable deletes

CSE 444 - Spring 2015 53

Scheduler

« The scheduler:

* Module that schedules the transaction’s
actions, ensuring serializability

* Two main approaches
* Pessimistic: locks
* Optimistic: time stamps, MV, validation

CSE 444 - Spring 2015

