
CSE 444: Database Internals

Lectures 13
Transaction Schedules

1 CSE 444 - Spring 2015

Announcements

•  Lab 2 is due TODAY
–  Lab 3 will be released tomorrow, part 1 due next

Monday

•  HW4 is due on Wednesday
–  HW3 has been released, due next week

•  544M: Paper 3 reading is due TODAY
–  Papers 4 and 5 are due on same day in a few weeks
–  Write-up should be 2 to 3 pages long since 2 papers

CSE 444 - Spring 2015 2

Motivating Example

CSE 444 - Spring 2015 3

Would like to treat
each group of

instructions as a unit

Client 1:
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

Client 2:
SELECT sum(money)
FROM Budget

Transaction

BEGIN TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

May be omitted if
autocommit is off:

first SQL query
starts txn

In ad-hoc SQL: each statement = one transaction
This is referred to as autocommit

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

CSE 444 - Spring 2015 4

Motivating Example

With autocommit and
without START TRANSACTION,
each SQL command
is a transaction

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget

CSE 444 - Spring 2015 5

CSE 444 - Spring 2015 6

Transactions

•  Major component of database systems
•  Critical for most applications; arguably more so

than SQL

•  Turing awards to database researchers:
–  Charles Bachman 1973
–  Edgar Codd 1981 for inventing relational dbs
–  Jim Gray 1998 for inventing transactions
–  Mike Stonebraker 2015 for INGRES and Postgres

•  And many other ideas after that

CSE 444 - Spring 2015 7

ROLLBACK

•  If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

•  This causes the system to “abort” the
transaction
–  Database returns to a state without any of the

changes made by the transaction

•  Several reasons: user, application, system

CSE 444 - Spring 2015 8

ACID Properties

•  Atomicity: Either all changes performed by
transaction occur or none occurs

•  Consistency: A transaction as a whole does not
violate integrity constraints

•  Isolation: Transactions appear to execute one
after the other in sequence

•  Durability: If a transaction commits, its changes
will survive failures

CSE 444 - Spring 2015 9

What Could Go Wrong?

Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems
–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems
–  Later lectures

•  Transaction may need to abort

CSE 444 - Spring 2015 10

Different Types of Problems
Client 1: INSERT INTO SmallProduct(name, price)

 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads

CSE 444 - Spring 2015 11

Different Types of Problems

Client 1:
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

CSE 444 - Spring 2015 12

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
 WHERE Account.number = ‘my-account’

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

Aborted by
system

13

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that
has not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The
second one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

CSE 444 - Spring 2015

CSE 444 - Spring 2015 14

Terminology Needed For Lab 3
Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE (lab 3)
•  Highest performance: STEAL/NO-FORCE (lab 5)
•  We will get back to this next week

CSE 444 - Spring 2015 15

Outline

•  Transactions motivation, definition, properties

•  Concurrency Control (the C in ACID)
–  This week

•  Recovery from failures (the A in ACID)
–  Next week

Schedules

CSE 444 - Spring 2015 16

A schedule is a sequence
of interleaved actions
from all transactions

Example

CSE 444 - Spring 2015 17

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in tx source code

A Serial Schedule

CSE 444 - Spring 2015 18

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Serializable Schedule

CSE 444 - Spring 2015 19

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule

CSE 444 - Spring 2015 20

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A Non-Serializable Schedule

CSE 444 - Spring 2015 21

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t) Why is it

non-serializable?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2015 22

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2015 23

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

Still Serializable, but…

CSE 444 - Spring 2015 24

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

•  Assume worst case updates:
–  We never commute actions done by transactions

•  As a consequence, we only care about reads and
writes
–  Transaction = sequence of R(A)’s and W(A)’s

CSE 444 - Spring 2015 25

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE 444 - Spring 2015 26

Conflict Serializability

CSE 444 - Spring 2015 27

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

Conflict Serializability

•  Every conflict-serializable schedule is serializable
•  The converse is not true in general

CSE 444 - Spring 2015 28

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

Conflict Serializability

CSE 444 - Spring 2015 29

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2015 30

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2015 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2015 32

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2015 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

•  The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Spring 2015 34

Example 1

CSE 444 - Spring 2015 35

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 444 - Spring 2015 36

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSE 444 - Spring 2015 37

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 444 - Spring 2015 38

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2015 39

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2015 40

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2015 41

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSE 444 - Spring 2015 42

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

View Equivalence
Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S,

then T reads the initial value of A in S’

•  If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

•  If T writes the final value of A in S,
then T writes the final value of A in S’

CSE 444 - Spring 2015 43

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
•  If a schedule is conflict serializable,

then it is also view serializable
•  But not vice versa

CSE 444 - Spring 2015 44

Schedules with Aborted Transactions

•  When a transaction aborts, the recovery
manager undoes its updates

•  But some of its updates may have affected
other transactions !

CSE 444 - Spring 2015 45

Schedules with Aborted Transactions

CSE 444 - Spring 2015 46

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

Schedules with Aborted Transactions

CSE 444 - Spring 2015 47

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

Recoverable Schedules

A schedule is recoverable if:
•  It is conflict-serializable, and
•  Whenever a transaction T commits, all

transactions who have written elements read
by T have already committed

CSE 444 - Spring 2015 48

Recoverable Schedules

49

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable
CSE 444 - Spring 2015

Recoverable Schedules

50

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

CSE 444 - Spring 2015 How do we recover ?

Cascading Aborts

•  If a transaction T aborts, then we need to
abort any other transaction T’ that has read
an element written by T

•  A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSE 444 - Spring 2015 51

Avoiding Cascading Aborts

52

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

CSE 444 - Spring 2015
Without cascading aborts With cascading aborts

Review of Schedules

Serializability

•  Serial
•  Serializable
•  Conflict serializable
•  View serializable

Recoverability

•  Recoverable
•  Avoids cascading

deletes

CSE 444 - Spring 2015 53

Scheduler

•  The scheduler:
•  Module that schedules the transaction’s

actions, ensuring serializability

•  Two main approaches
•  Pessimistic: locks
•  Optimistic: time stamps, MV, validation

CSE 444 - Spring 2015 54

