CSE 444: Database Internals

Lecture 7
Query Execution and
Operator Algorithms (part 1)

CSE 444 - Spring 2015 1

Announcements

* Lab 2/ part 1 due Friday, 11pm

* CSEb544M: review 2 due today, 11pm

CSE 444 - Spring 2015 2

What We Have Learned So Far
» Overview of the architecture of a DBMS

* Access methods
— Heap files, sequential files, Indexes (hash or B+ trees)

* Role of buffer manager

» Practiced the concepts in hw1 and lab1

CSE 444 - Spring 2015 3

DBMS Architecture

Admission Control
[_Query Rewrite]
Memory Mgr

Optimizer
Disk Space Mgr
Executor

Replication Services
Process Manager || Query Processor [Admin Utiliies]

[Access Methods | [Buffer Manager | Shared Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Storage Manager Red Book. 4ed] .

[Lock Manager | [Log Manager

Next Lectures

* How to answer queries efficiently!
— Physical query plans and operator algorithms

* How to automatically find good query plans
— How to compute the cost of a complete plan
— How to pick a good query plan for a query
— i.e., Query optimization

CSE 444 - Spring 2015 5

Query Evaluation Steps Review
SQL ?uery

[Parse & Rewrite Query}
Logical

Select Logical Pan plan

plan

Query
optimization

Physical Query Plan

(On the fly) T sname

(On the ﬂy) o sscity="Seattle’ nsstate="WA' A pno=2

(Nested loop)

SNo = sno

Suppliers Supplies

(File scan) (File scan)
CSE 444 - Spring 2015 7

Physical Query Plan

* Access path selection for each relation:
— File scan, or
— Index lookup with a predicate

* Implementation choice for each operator
— We will learn different algorithms

» Scheduling decisions for operators
— Pipelined execution, or
— Intermediate tuple materialization

CSE 444 - Spring 2015 8

Iterator Interface

* open()
— Initializes operator state
— Sets parameters such as selection condition
* next()
— Operator invokes get_next() recursively on its inputs
— Performs processing and produces an output tuple

 close(): clean-up state

CSE 444 - Spring 2015 9

Pipelined Query Execution

open
(On the fly) e snamep 0
open()
(On the ﬂY) o sscity="Seattle’ nsstate="WA' A pno=2
open()
(Nested loop)
SNO = sno
open()/ open()
Suppliers Supplies
(File scan) (File scan)
CSE 444 - Spring 2015 10

Pipelined Query Execution

(On the fly) 7 X0
next()
(On the ﬂy) o sscity='Seattle’ nsstate="WA’ A pno=2
next()
(Nested loop)
SNo = sno
next()
next()/ next()
Suppliers Supplies
(File scan) (File scan)

CSE 444 - Spring 2015 11

Pipelined Execution

» Tuples generated by an operator are immediately
sent to the parent

+ Benefits:
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk

» This approach is used whenever possible

CSE 444 - Spring 2015 12

Intermediate Tuple Materialization

» Tuples generated by an operator are written
to disk an in intermediate table

* No direct benefit
* Necessary:

— For certain operator implementations
— When we don’t have enough memory

CSE 444 - Spring 2015 13

Intermediate Tuple Materialization

(On the fIy) T sname

(Sort-merge join)

sno = sno

(Scan: write to T1) / \ (Scan: write to T2)
o

sscity="Seattle’ rsstate="WA' [6) pno=2
Suppliers Supplies
(File scan) (File scan)
CSE 444 - Spring 2015 14

Memory Management

Each operator:
» Pre-allocates heap space for tuples
— Pointers to base data in buffer pool
— Or new tuples on the heap
+ Allocates memory for its internal state
— Either on heap or buffer pool (depends on system)

DMBS may limit how much memory each
operator, or each query can use

CSE 444 - Spring 2015 15

Query Execution Bottom Line

« SQL query transformed into physical plan
— Access path selection for each relation
— Implementation choice for each operator
— Scheduling decisions for operators

« Execution of the physical plan is pull-based

« Operators given a limited amount of memory

CSE 444 - Spring 2015 16

Operator Algorithms

CSE 444 - Spring 2015 17

Operator Algorithms

Design criteria
« Cost: 10, CPU, Network
* Memory utilization

» Load balance (for parallel operators)

CSE 444 - Spring 2015 18

Cost Parameters

+ Cost = total number of I/Os
— This is a simplification that ignores CPU, network

* Parameters:
— B(R) = # of blocks (i.e., pages) for relation R
— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a
+ When ais a key, V(R,a) = T(R)
+ When a is not a key, V(R,a) can be anything < T(R)

CSE 444 - Spring 2015 19

Convention
» Cost = the cost of reading operands from disk

« Cost of writing the result to disk is not included,
need to count it separately when applicable

CSE 444 - Spring 2015 20

Example:
Cost of Scanning a Table

* Result may be unsorted: B(R)

* Result needs to be sorted: 3B(R)
— We will discuss sorting later

CSE 444 - Spring 2015 21

Outline

« Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

» Note about readings:
— In class, we discuss only algorithms for joins

— Other operators are easier: read the book

CSE 444 - Spring 2015 22

Join Algorithms
* Hash join
* Nested loop join

» Sort-merge join

CSE 444 - Spring 2015 23

Hash Join
Hash join: Rx S
* Scan R, build buckets in main memory
* Then scan S and join

* Cost: B(R) + B(S)

* One-pass algorithm when B(R) <M

CSE 444 - Spring 2015 24

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

Patient > Insurance /" Twotuples
per page '

Insurance
2| ‘Blue’ | 123
‘Prem’ | 432

4
4| ‘Prem’ | 343
3| ‘GrpH’ | 554

Ve /Showing pid ‘

\\ only /

Hash Join Example ¢, ..

Memory M = 21‘%%

Patient o< Insurance

? This is one page N
w two tuples %

Hash Join Example
Step 1: Scan Patient and build hash table in memory
Can be done in

Memory M = 21 pages

Hash h: pid % 5

[5] [1Tel2] [[aTsll4To]

>
[]

Input buffer

method open()

Hash Join Example
Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next()

Hash h: pid % 5

[5] [1Tell2] [aTsll4To]|

,
Input buffer / Output buffer

— Write to disk or

pass to next)

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages

Hash h: pid % 5

[5] [1Tel2] [[aTsll4To]

Input buffer Output buffer

calls to next()

Hash Join Example
Step 2: Scan Insurance and probe into hash table
Done during Memory M = 21 pages
calls to next()

Hash h: pid % 5

[5] [1Tell2] [aTell4To]|

Input buffer Output buffer

Keep going until read all of Insurance

Cost: B(R) + B(S)

Nested Loop Joins Nested Loop Joins

» Tuple-based nested loop R X S * Tuple-based nested loop R S
* Ris the outer relation, S is the inner relation « Ris the outer relation, S is the inner relation
for each tuple t; in R do for each tuple t; in R do
for each tuple t, in S do for each tuple t, in S do
if t; and t, join then output (t;,t,) if t; and t, join then output (t,,t,)

M - Cost: B(R) + T(R) B(S) What is the Cost

» Multiple-pass since S is read many times

CSE 444 - Spring 2015 31 CSE 444 - Spring 2015 32
Page-at-a-time Refinement Page-at-a-time Refinement
for each page of tuples rin R do for each page of tuples rin R do
for each page of tuples s in S do for each page of tuples s in S do
for all pairs of tuples t;inr, t,ins for all pairs of tuples t,inr, t,ins
if t; and t, join then output (t,,t,) if t; and t, join then output (t;,t,)

+ Cost: B(R) + B(R)B(S)

CSE 444 - Spring 2015 33 CSE 444 - Spring 2015 34

Page-at-a-time Refinement Page-at-a-time Refinement

- Input buffer for Patient - Input buffer for Patient
Input buffer for Insurance Input buffer for Insurance

[]

Output buffer Output buffer

Page-at-a-time Refinement

- Input buffer for Patient
Input buffer for Insurance

Keep going until read

all of Insurance
Then repeat for next Output buffer

page of Patient... until end of Patient

Cost: B(R) + B(R)B(S) a7

Block-Nested-Loop Refinement

for each group of M-1 pages rin R do
for each page of tuples s in S do
for all pairs of tuples t, inr, t,ins
if t; and t, join then output (t,,t,)

What is the Cost?

CSE 444 - Spring 2015 38

Block-Nested-Loop Refinement

for each group of M-1 pages r in R do
for each page of tuples s in S do
for all pairs of tuples t; inr, t,ins
if t; and t, join then output (t,,t,)

+ Cost: B(R) + B(R)B(S)/(M-1)

CSE 444 - Spring 2015 39

Sort-Merge Join

Sort-merge join: RS

* Scan R and sort in main memory
* Scan S and sort in main memory
* Merge Rand S

» Cost: B(R) + B(S)
* One pass algorithm when B(S) + B(R) <=M
» Typically, this is NOT a one pass algorithm

CSE 444 - Spring 2015 40

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Memory M = 21 pages

a1

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

[1]2][3]4][s]e][8]9]
[1]2][2]3][3]4][4]6]

42

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

(1]2][3]4][5]e][8]e]
[112][2]3][3]4][4]6]

Output buffer

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

43

[1]2][3]4][5]e][8]9]
[112]2]3][3]4][4]s6]

Output buffer

Keep going until end of first relation

44

