
CSE 444: Database Internals

Lecture 7
Query Execution and

Operator Algorithms (part 1)

1 CSE 444 - Spring 2015

Announcements

•  Lab 2 / part 1 due Friday, 11pm

•  CSE544M: review 2 due today, 11pm

CSE 444 - Spring 2015 2

What We Have Learned So Far

•  Overview of the architecture of a DBMS

•  Access methods
–  Heap files, sequential files, Indexes (hash or B+ trees)

•  Role of buffer manager

•  Practiced the concepts in hw1 and lab1
CSE 444 - Spring 2015 3

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.] 4

Next Lectures

•  How to answer queries efficiently!
–  Physical query plans and operator algorithms

•  How to automatically find good query plans
–  How to compute the cost of a complete plan
–  How to pick a good query plan for a query
–  i.e., Query optimization

CSE 444 - Spring 2015 5

Query Evaluation Steps Review

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

6

CSE 444 - Spring 2015

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

7

Physical Query Plan

•  Access path selection for each relation:
–  File scan, or
–  Index lookup with a predicate

•  Implementation choice for each operator
–  We will learn different algorithms

•  Scheduling decisions for operators
–  Pipelined execution, or
–  Intermediate tuple materialization

CSE 444 - Spring 2015 8

CSE 444 - Spring 2015

Iterator Interface
•  open()

–  Initializes operator state
–  Sets parameters such as selection condition

•  next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close(): clean-up state

9

CSE 444 - Spring 2015

Pipelined Query Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

10

open()

open()

open()

open() open()

CSE 444 - Spring 2015

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

11

nex()

next()

next()

next()
next()

next()

Pipelined Query Execution

CSE 444 - Spring 2015

Pipelined Execution

•  Tuples generated by an operator are immediately
sent to the parent

•  Benefits:
–  No operator synchronization issues
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk

•  This approach is used whenever possible

12

Intermediate Tuple Materialization

•  Tuples generated by an operator are written
to disk an in intermediate table

•  No direct benefit
•  Necessary:

–  For certain operator implementations
–  When we don’t have enough memory

CSE 444 - Spring 2015 13

CSE 444 - Spring 2015

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

14

Memory Management

Each operator:
•  Pre-allocates heap space for tuples

–  Pointers to base data in buffer pool
–  Or new tuples on the heap

•  Allocates memory for its internal state
–  Either on heap or buffer pool (depends on system)

DMBS may limit how much memory each
operator, or each query can use

CSE 444 - Spring 2015 15

CSE 444 - Spring 2015

Query Execution Bottom Line

•  SQL query transformed into physical plan
–  Access path selection for each relation
–  Implementation choice for each operator
–  Scheduling decisions for operators

•  Execution of the physical plan is pull-based

•  Operators given a limited amount of memory

16

Operator Algorithms

CSE 444 - Spring 2015 17

Operator Algorithms

Design criteria

•  Cost: IO, CPU, Network

•  Memory utilization

•  Load balance (for parallel operators)

CSE 444 - Spring 2015 18

Cost Parameters

•  Cost = total number of I/Os
–  This is a simplification that ignores CPU, network

•  Parameters:
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

•  When a is a key, V(R,a) = T(R)
•  When a is not a key, V(R,a) can be anything < T(R)

19 CSE 444 - Spring 2015

CSE 444 - Spring 2015

Convention

•  Cost = the cost of reading operands from disk

•  Cost of writing the result to disk is not included;
need to count it separately when applicable

20

CSE 444 - Spring 2015

Example:
Cost of Scanning a Table

•  Result may be unsorted: B(R)

•  Result needs to be sorted: 3B(R)
–  We will discuss sorting later

21

CSE 444 - Spring 2015

Outline

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)
–  Two-pass algorithms (Sec 15.4 and 15.5)

•  Note about readings:
–  In class, we discuss only algorithms for joins
–  Other operators are easier: read the book

22

CSE 444 - Spring 2015

Join Algorithms

•  Hash join

•  Nested loop join

•  Sort-merge join

23

CSE 444 - Spring 2015

Hash Join

Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S and join
•  Cost: B(R) + B(S)

•  One-pass algorithm when B(R) ≤ M

24

Hash Join Example

25

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

26

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing pid
only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough nb

This is one page
with two tuples

Hash Join Example

27

Step 1: Scan Patient and build hash table in memory
Can be done in
method open()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2

Hash Join Example

28

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

29

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
4 4

Hash Join Example

30

Step 2: Scan Insurance and probe into hash table
Done during
calls to next()

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 4 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

CSE 444 - Spring 2015

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

for each tuple t1 in R do
 for each tuple t2 in S do
 if t1 and t2 join then output (t1,t2)

31

What is the Cost?

CSE 444 - Spring 2015

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)
•  Multiple-pass since S is read many times

32

What is the Cost?

for each tuple t1 in R do
 for each tuple t2 in S do
 if t1 and t2 join then output (t1,t2)

Page-at-a-time Refinement

CSE 444 - Spring 2015 33

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

What is the Cost?

CSE 444 - Spring 2015

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

34

What is the Cost?

1 2

Page-at-a-time Refinement

35

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance 2 4

Page-at-a-time Refinement

36

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 4 3

1 2

Page-at-a-time Refinement

37

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance
Then repeat for next
page of Patient… until end of Patient

Block-Nested-Loop Refinement

CSE 444 - Spring 2015 38

for each group of M-1 pages r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

What is the Cost?

CSE 444 - Spring 2015

Block-Nested-Loop Refinement

•  Cost: B(R) + B(R)B(S)/(M-1)

for each group of M-1 pages r in R do
 for each page of tuples s in S do

 for all pairs of tuples t1 in r, t2 in s
 if t1 and t2 join then output (t1,t2)

39

What is the Cost?

CSE 444 - Spring 2015

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S) + B(R) <= M
•  Typically, this is NOT a one pass algorithm

40

Sort-Merge Join Example

41

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory

Sort-Merge Join Example

42

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

Sort-Merge Join Example

43

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

44

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

