CSE 444: Database Internals

Lectures 5-6
Indexing

CSE 444 - Spring 2015 1

Announcements

* HW1 due tonight by 11pm

— Turn in an electronic copy (word/pdf) by 11pm, or
— Turn in a hard copy after class

* Lab1 is due Friday, 11pm

— Do not fall behind on the labs! They build on each
other

CSE 444 - Spring 2015 2

Basic Access Method: Heap File

API

» Create or destroy a file

* Insert a record

* Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid

— Not necessary for sequential scan operator
— But used with indexes

» Scan all records in the file

CSE 444 - Spring 2015 3

But Often Also Want....

Scan all records in the file that match a
predicate of the form attribute op value
— Example: Find all students with GPA > 3.5

Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data?

This lecture and next, we will learn how

CSE 444 - Spring 2015 4

Searching in a Heap File

File is not sorted on any attribute
Student (sid: int, age: int, ..)

1 record

}— 1 page

CSE 444 - Spring 2015 5

Heap File Search Example

10,000 students

10 student records per page

Total number of pages: 1,000 pages
Find student whose sid is 80

— Must read on average 500 pages

Find all students older than 20
— Must read all 1,000 pages
Can we do better?

CSE 444 - Spring 2015 6

Sequential File

File sorted on an attribute, usually on primary key
Student (sid: int, age: int, ..)

Sequential File Example

» Total number of pages: 1,000 pages
» Find student whose sid is 80

— Could do binary search, read log,(1,000) = 10 pages
« Find all students older than 20

— Must still read all 1,000 pages

» Can we do even better?
* Note: Sorted files are inefficient for inserts/deletes

CSE 444 - Spring 2015 8

Indexes

Index: data structure that organizes data records on disk to optimize
selections on the search key fields for the index

« Anindex contains a collection of data entries, and supports efficient
retrieval of all data entries with a given search key value k

« Indexes are also access methods!
— So they provide the same AP as we have seen for Heap Files
— And efficiently support scans over tuples matching a predicate on the search key

CSE 444 - Spring 2015 10

o Jo]
o [0 |
[0 [0 |
[0 [0 |
CSE 444 - Spring 2015 7
Outline
* Index structures Tod
. oada’
* Hash-based indexes v
« B+ trees } Next time
CSE 444 - Spring 2015 9
Indexes

Search key = can be any set of fields
— not the same as the primary key, nor a key
Index = collection of data entries

Data entry for key k can be:

— The actual record with key k
« In this case, the index is also a special file organization
« Called: “indexed file organization”

— (k, RID)

— (k, list-of-RIDs)

CSE 444 - Spring 2015 1

Different Types of Files

» For the data inside base relations:
— Heap file (tuples stored without any order)
— Sequential file (tuples sorted some attribute(s))
— Indexed file (tuples organized following an index)
* Then we can have additional index files that
store (key,rid) pairs
* Index can also be a “covering index”
— Index contains (search key + other attributes, rid)
— Index suffices to answer some queries

CSE 444 - Spring 2015 12

Primary Index

+ Primary index determines location of indexed records
« Dense index: sequence of (key,rid) pairs

Index File Data File (Sequential file)
P —

1 data entry — o o

B
1 page ::
®

0

i

e EH EHHI

yAVANII]

CSE 444 - Spring 2015 13

Primary Index

» Sparse index

CSE 444 - Spring 2015

—— N —
= EN S
-
-

Primary Index
with Duplicate Keys

» Sparse index: pointer to lowest search key on
each page: Example search for 20

...but
need to
search

o FT] \nerewo
EA O
: O
N

CSE 444 - Spring 2015 15

E
)
“© 30
E)

Primary Index
with Duplicate Keys

* Better: pointer to lowest new search key on

each page:

1A

..ok to
search
from here

5

» Search for15? 357?

CSE 444 - Spring 2015

Primary Index
with Duplicate Keys

* Dense index:

CSE 444 - Spring 2015 17

Primary Index: Back to Example

» Let's assume all pages of index fit in memory

* Find student whose sid is 80

— Index (dense or sparse) points directly to the page

— Only need to read 1 page from disk.
Find all students older than 20
— Must still read all 1,000 pages.

* How can we make both queries fast?

CSE 444 - Spring 2015

Secondary Indexes

+ To index other attributes than primary key
» Always dense (why ?)

\l/

CSE 444 - Spring 2015 19

Clustered vs.
Unclustered Index

Data entries
Data entries

45— 55 U ~ Ao

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

CSE 444 - Spring 2015 20

Clustered/Unclustered

* Primary index = clustered by definition
+ Secondary indexes = usually unclustered

CSE 444 - Spring 2015 21

Secondary Indexes

« Applications
— Index other attributes than primary key
— Index unsorted files (heap files)
— Index files that hold data from two relations

« Called “clustered file”
« Notice the different use of the term “clustered”!

CSE 444 - Spring 2015 2

Index Classification Summary

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse

— Dense = every key in the data appears in the index

— Sparse = the index contains only some keys
Clustered/unclustered

— Clustered = records close in index are close in data

— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

CSE 444 - Spring 2015 2

Large Indexes
* What if index does not fit in memory?

* Would like to index the index itself
— Hash-based index
— Tree-based index

CSE 444 - Spring 2015 2

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00

— E .

o ERE h1(sid) = 00

= [=N

age = EED
w |1
h2(age) = 01 9 b sid

ERE

: 60 18

h1(sid) = 11
CRE
w |1
Secondary

hash-based index Primary hash-based index

CSE 444 - Spring 2015 25

Tree-Based Index
* How many index levels do we need?

Can we create them automatically? Yes!
Can do something even more powerful!

CSE 444 - Spring 2015 26

B+ Trees
» Search trees

* Ideain B Trees
— Make 1 node = 1 page (= 1 block)
— Keep tree balanced in height

* Idea in B+ Trees
— Make leaves into a linked list : facilitates range queries

CSE 444 - Spring 2015 27

B+ Trees

Data entries

Data entries
(ndex File

T 4o ﬁDﬁD

Data Records Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

CSE 444 - Spring 2015 28

B+ Trees Basics

Parameter d = the degree
Each node has d <= m <= 2d keys (except root)
Each node also
has m+1 pointers
Keysk<30 1 ovs 30<sket20 Keys 120<=k<240 Keys 240<=k

Each leaf has d <= m <= 2d keys:

ENENEN
!n-- Next leaf
Data records
CSE 444 - Spring 2015 29

B+ Tree Example

Find the key 40

20 | 60 100 | 120 | 140

20\ 40 < 60

\
IR | 20 30| 40 | s0 0

I
I,M \\ /\.M\\ M

o LLML& : é 4

CSE 444 - Spring 2015 30

65 80 | 85] 90

Searching a B+ Tree

+ Exact key values:
— Start at the root
— Proceed down, to the leaf

Select name
From Student
Where age = 25

* Range queries:

Select name

From Student

Where 20 <= age
and age <= 30

— Find lowest bound as above
— Then sequential traversal

CSE 444 - Spring 2015

31

B+ Tree Design

* How large d ?
« Example:
— Key size = 4 bytes
— Pointer size = 8 bytes
— Block size = 4096 bytes
2d x4 +(2d+1)x 8 <= 4096
d=170

CSE 444 - Spring 2015

B+ Trees in Practice

+ Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133
» Typical capacities
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records
» Can often hold top levels in buffer pool
— Level 1= 1 page = 8 Kbytes
— Level2= 133 pages= 1 Mbyte
— Level 3 = 17,689 pages = 133 Mbytes

CSE 444 - Spring 2015 33

Insertion in a B+ Tree

Insert (K, P)
Find leaf where K belongs, insert
If no overflow (2d keys or less), halt
If overflow (2d+1 keys), split node, insert in parent:

parent parent
K3

I |

P\‘PJ‘(’S‘

If leaf, also keep K3 in right node
+ When root splits, new root has 1 key only

CSE 444 - Spring 2015

Insertion in a B+ Tree
Insert K=19

(o T T 1

(2l [|

|1ou‘|zu‘|4u‘ |

20 ‘ 30 ‘ ERIED

55

I I "]
MFENEE S NN TR APEE

CSE 444 - Spring 2015 35

Insertion in a B+ Tree
After insertion

18

|m‘\s

ml zu‘m‘m‘solm\ xn‘ﬁs‘an

[] []
INNNE AR

:

CSE 444 - Spring 2015

65

Insertion in a B+ Tree
Now insert 25

EN .

| 20 ‘ 60 ‘ ‘ | | 100 ‘ |zn‘ |4n‘ |

| 10 ‘ m‘ 18 ‘ wl 20 |30 [40 | s0 | s0 ‘ % ‘ |

\ \
| |‘ \ ‘\ [| H/ /
mmmmLthL ‘/
CSE 444 - Spring 2015 37

Insertion in a B+ Tree

But now have to split !

|20‘6U‘ ‘ | |1ou‘|zu‘|4u‘ |

AINENEE

| 10 ‘ u‘ I8 ‘ wl 20 | 25 | 30 ‘ W0 ,ml | 0 | 6 S0 | 85| 90
T T
mmmmmammmuhézz

CSE 444 - Spring 2015 39

Deletion from a B+ Tree

Delete 30
(o T []
|20‘}U‘6U‘ | |1ou‘|zu‘|4u‘ |
AINENINE L T 4]

l\

MV,

CSE 444 - Spring 2015 41

)

Insertion in a B+ Tree

After insertion

20 | 60 100 | 120 | 140

|m‘\s‘m‘n| 0 [25| 30 |40 s0 |/n‘(,<‘ |xu as‘m‘ |

,\.\\\\M—h\\\ H—I/\ [/]

RIRRNS AW

CSE 444 - Spring 2015 38

miEhn

Insertion in a B+ Tree
After the split

| 50 a0 | s0 w | 6 50 | 85 | o0 |

|‘|‘ ‘H’/ |‘\‘ ‘/‘

HLL{{ LL{ 7 b

CSE 444 - Spring 2015

[[=)(e]]

Deletion from a B+ Tree
After deleting 30

May change to
40, or not

/\\\ E—

20 ‘ 25 ” ERIE] 60
INEE: 3

;L{xm4£

CSE 444 - Spring 2015

s [85 | %0

mlEinn

Deletion from a B+ Tree

Now delete 25
(o T []
|2n‘m‘(n‘ | |mo‘|zn‘|4n‘ |
AINENENE L I L]

AN \\

‘ ||m ‘ ‘ |(U‘h< 50 | 85| 0

,\.\ E7INE

==

-
.

N

NiRyaNIv//a

CSE 444 - Spring 2015

Deletion from a B+ Tree

Now delete 40
(=T T T]
|I0‘3U‘6U‘ | |1ou‘|u‘|4u‘
N 4\|
19 zu‘ | -m‘m ‘ w0 | 65 50 | 8 |
PEENE YN \-.\\\ L \/\

.L{éé

CSE 444 - Spring 2015

Deletion from a B+ Tree
After deleting 25
Need to rebalance
Rotate

CSE 444 - Spring 2015

Deletion from a B+ Tree
After deleting 40

\\‘

‘ ‘ 50 | 85 | o0 |

\ \-.\\\ M

LL{ 7 b

CSE 444 - Spring 2015

Deletion from a B+ Tree

Final tree

(o T T 1

|1ou‘|zu‘|4u‘ |

\\\ iR M

]

@L{éé

CSE 444 - Spring 2015

Summary on B+ Trees

» Default index structure on most DBMSs

+ Very effective at answering ‘point’ queries:
productName = ‘gizmo’

« Effective for range queries:
50 < price AND price < 100

* Less effective for multirange:
50 < price <100 AND 2 < quant <20

CSE 444 - Spring 2015 48

+ Let's take a look at another example of an

index....

Optional Material

CSE 444 - Spring 2015

49

R-Tree Example

Designed for spatial data .
Search key values are bounding boxes

IENEEN
o] [a]

R3 R4 R6
ENEINEIN R NN
[a]

o] [Re] [re] [re] [r7]

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

CSE 444 - Spring 2015 50

