
CSE 444: Database Internals

Lecture 1 Introduction

Course Staff

- Instructor: Magdalena (Magda) Balazinska
 - magda@cs.washington.edu OH: Thursdays 4:30-5:20
- TA: Lindsey Nguyen
 - nhlien93@cs, OH: 1:30 2:30 on Tuesdays
- TA: Yuqing Guo
 - yu922@cs, OH: 3:30 4:30 on Mondays
- TA: Dan Radion
 - daradion@cs, OH: 2:30 3:30 on Fridays

- The world is drowning in data!
- Need computer scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services (e.g. Facebook)
 - Help governments become more efficient
- This class: principles of building data mgmt systems
 - Learn how classical DBMSs are built
 - Learn key principles and techniques
 - Get hands-on experience building a (parallel) DBMS

Course Format

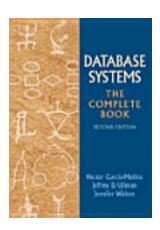
- Lectures MWF, 12:30pm-1:20pm
- Sections: Th 9:30-10:20, 10:30-11:20
- Homeworks
 - 6 Labs + 6 Homeworks
- NO exams

Communication (part 1)

- Web page: http://www.cs.washington.edu/444
 - Lectures/Sections will be available there
 - Homeworks/Labs will be available there


Mailing list

- Announcements, group discussions
- If you are taking CSE444, you are already subscribed
- If CSEM 544, please add yourselves to the list!


Communication (part 2)

Message Board:

- Ask questions about the course, labs, homeworks
- Do not post any fragments of your code
- Do not send questions by email unless
 - You need to discuss a personal matter
 - You want to setup an appointment
 - A question has not been answered on the board

Textbooks

Recommended textbook (pick one)

- Database Management Systems. Third Ed.
 Ramakrishnan and Gehrke. McGraw-Hill.
- Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Second edition.

Other Readings

- See Website
- There is a section on reading assignments for 544M only
 - Will need to submit 4 paper reviews throughout the quarter

Grading CSE444

• Lab 1, 2, 3, 5: 40% (10% each)

• Final Lab 4 or Lab 6 (your choice): 15%

Final project report 10%

Six written assignments: 35%

Grading CSE 544M

- Same as CSE 444 plus
- Another 10% for the 4 paper reviews
- Then re-normalize to add up to 100%

Graded separately from CSE 444

Six Labs

- Lab 1: Build a DBMS that can scan a relation on disk
 - Part 1 of this lab is due on Friday!
- Lab 2: Build a DBMS that can run simple SQL queries and also supports data updates
- Lab 3: Add a lock manager (transactions)
- Lab 5: Add a write-ahead log (transactions)
- Lab 4: Add a query optimizer
- Lab 6: Make your DBMS parallel

Warning: I will run cheating-detecting software!

About the Labs

Logistics:

- To be done INDIVIDUALLY!
- Each lab will take a significant amount of time
- Labs build on each other

Purpose

- Hands-on experience building a DBMS
- Deepen your understanding significantly
- We will build a classical DBMS
- In class we will discuss some new-types of DBMSs

Six Homeworks

- Written assignments
- Help review material learned in class
- Prepare you for the labs
 - One homework before each corresponding lab
- Go beyond what we implement in labs
- To be done INDIVIDUALLY

Exams

No exams

Late Days

- Total of 4 late-days
- Use in 24-hour chunks on hws or labs
- At most 2 late-days per assignment

 No late-days can be applied to the final project due during finals week

Outline (this lecture and next)

Review of DBMS goals and features

Review of relational model

Review of SQL

Review: DBMS

What is a database? Give examples

 What is a database management system? Give examples

Review: DBMS

- What is a database? Give examples
 - A collection of related files
 - E.g. payroll, accounting, products
- What is a database management system?
 Give examples
 - A big C program written by someone else that manages the database; PostgreSQL, Oracle, ...
 - In 444 you are that "someone else", implementing SimpleDB

Review: Data Model

What is a data model?

What is the relational data model?

Review: Data Model

- What is a data model?
 - A mathematical formalism for data
- What is the relational data model?
 - Data is stored in tables (aka relations)
 - Data is queried via relational queries
 - Queries are set-at-a-time

Review: Transactions

What is a transaction?

What properties do transactions have?

Review: Transactions

- What is a transaction?
 - A set of instructions that must be executed all or nothing
- What properties do transactions have?
 - ACID
 - Better: Serialization, recovery

Review: Data Independence

The application should not be affected by changes of the physical storage of data

- Indexes
- Physical organization on disk
- Physical plans for accessing the data
- Parallelism: multicore, distributed

Some Key Data Management Concepts

- Data models: Relational, XML, graph data (RDF)
- Schema v.s. Data
- Declarative query languages
 - Say what you want not how to get it
- Data independence
 - Physical: Can change how data is stored on disk without maintenance to applications
- Query compiler and optimizer
- Transactions: isolation and atomicity

Course Content

Focus: how to build a classical relational DBMS

- Review of the relational model (lecture 1 and 2)
- DBMS architecture and deployments (lecture 3)
- Data storage, indexing, and buffer mgmt (lectures 4-6)
- Query evaluation (lectures 7-9)
- Query optimization (lectures 10-13)
- Transactions (lectures 14-19)
- Parallel query processing (lectures 20-22)
- Replication and distribution (lectures 23-25)
- Database as a service and NoSQL (lectures 26 and 27)

Relational Model...

- Let's start our review of the relational model...
- We will continue next lecture