CSE 444: Database Internals

Section 8:
Parallel Processing

Review in this section

> Parallel DBMS + MapReduce
» 2- Phase Commit (2PC)

1a. Parallel DBMS

R(a,b) is horizontally partitioned across N = 3 machines.

Each machine locally stores approximately 1/N of the tuples in R.

The tuples are randomly organized across machines (i.e., R is block
partitioned across machines).

Show a RA plan for this query and how it will be executed across the N =3
machines.

Pick an efficient plan that leverages the parallelism as much as possible.

SELECT a, max(b) as topb
FROMR

WHEREa>0

GROUP BY a

R(a, b)

1/3 of R

1/3 of R

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

1/3 of R

R(a, b)

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

Machine 1

Machine 2

Machine 3

SELECT a, as topb
R(a, b) FROM R ‘

WHERE a>0
GROUP BY a

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R

WHERE a>0
GROUP BY) a

R(a, b)

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R

WHERE a >0

GROUP BY a

R(a, b)

Hashon a

Machine 3

Machine 2

Machine 1

SELECT a, max(b) as topb FROM R
R(a, b) WHERE a >0 GROUP BY a

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb FROM R
R(a, b) WHERE a >0 GROUP BY a

Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb

— —l]

|
|

Machine 2 Machine 3

1b. Map Reduce

Explain how the query will be executed in
MapReduce

SELECT a, max(b) as topb
FROMR

WHEREa >0
GROUP BY a

Specify the computation performed in the map and
the reduce functions

SELECT a, max(b) as topb
FROM R

M 3 WHERE a > 0
p GROUP BY a

 Each map task
— Scans a block of R
— Calls the map function for each tuple

— The map function applies the selection predicate to the
tuple

— For each tuple satisfying the selection, it outputs a record
with key =a and value =b

SELECT a, max(b) as topb
FROM R

Shuffle GROUP 812

 The MapReduce engine reshuffles the output of the
map phase and groups it on the intermediate key, i.e.
the attribute a

SELECT a, max(b) as topb
FROM R

Reduce GROUP B &

e Each reduce task

« computes the aggregate value max(b) = topb for each
group (i.e. a) assigned to it (by calling the reduce function)

« outputs the final results: (a, topb)

A local combiner can be used to compute local max before
data gets reshuffled (in the map tasks)

SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ews?

 What would change if we hash-partitioned R
on R.a before executing this query

— For parallel DBMS
— For MapReduce

SELECT a, max(b) as topb FROM R
Hash-partitiononaforR(a,b) Yyugac ;0 GROUP BY »
Ya, max(b)->topb Ya, max(b)->topb Ya, max(b)->topb

— —l]

|
|

Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ews?

* For parallel DBMS

— It would avoid the data re-shuffling phase
— It would compute the aggregates locally

SELECT a, max(b) as topb FROM R
WHERE a >0 GROUP BY a

@max(b)&to} @max(b)»toD @max(b)»@

Machine 1 Machine 2 Machine 3

SELECT a, max(b) as topb
FROM R

1c. Benefit of hash-partitioning %ews?

 For MapReduce

— Logically, MR won’t know that the data is hash-
partitioned

— MR treats map and reduce functions as black-boxes
and does not perform any optimizations on them

 But, if a local combiner is used
— Saves communication cost:
* fewer tuples will be emitted by the map tasks

— Saves computation cost in the reducers:
* the reducers would not have to do anything

2. 2PC

* |n the 2PC protocol, what happens if
— a coordinator sends PREPARE messages

— all but one subordinate vote to commit the
transaction

— the last subordinate also wants to commit, but it
crashes before receiving the PREPARE message
from the coordinator

— Reading Ramakrishnan-Gehrke book and/or the IBM paper
might be useful (only 2-3 pages)

Review: Two-Phase Commit Protocol

* One coordinator and many subordinates
— Phase 1: prepare
— Phase 2: commit or abort
— Log records for 2PC include transaction and coordinator ids
— Coordinator also logs ids of all subordinates

* Principle
— When a process makes a decision: vote yes/no or commit/abort
— Or when a subordinate wants to respond to a message: ack
— First force-write a log record (to make sure it survives a failure)
— Only then send message about decision

Review: 2PC: Phase 1, Prepare

Coordinator
. 2) PREPARE Subordinate 1
1) User decide o —
HvEsS—__@

to commit
3) Force-write: prepare

2) PREPARE

4) YES
4) YES %
) PREPARE Subordinate 2

3) Force-write: prepare

NO vote SUbordmate_ 3_ Coordinator/subordinate for
is like a 3) Force-write: prepare a specific transaction

veto
22

Review: 2PC: Phase 2, Commit

Coordinat 6) Write: end, then forget transaction
oordinator
2) COMMIT Subordinate 1

1) Force-write: N —
HACK—@

commit

Transaction Is 2) COMMIT 3) Force-write: commit
now committed! 5) Commit transaction
4) ACK and “forget” it

2) COMMW% Subordinate 2

3) Force-write: commit
5) Commit transaction
Subordinate 3 and “forget” it

3) Force-write: commit
5) Commit transaction and “forget” it

4) ACK

23

Review: 2PC with Abort

Coordinator

. 2) PREPARE Subordinate 1
1) User decide o —
to commit 4) YES “— 3
) PREPARE 3) Force-write: prepare
4) NO
) PREPARE Subordinate 2
3) Force-write: abort

5) Abort transaction

Subordinate 3 and “forget” it

3) Force-write: abort
5) Abort transaction and “forget” it

24

Review: 2PC with Abort

6) Write: end, then forget transaction

Coordinator
. 2) ABORT Subordinate 1
1) Force-write:

abort F 4) AC?\ 3

3) Force-write: abort
5) Abort transaction
and “forget” it

‘ Subordinate 2

Subordinate 3

25

2. 2PC - Solution

A coordinator sends PREPARE messages, all but one subordinate vote to
commit, the last subordinate crashes before receiving the PREPARE msg

e Coordinator

— Time-out waiting for the reply from the failed
subordinate

— Will decide to abort the transaction
— Write an abort log record
— Will send a ABORT message to the subordinates

2. 2PC - Solution

A coordinator sends PREPARE messages, all but one subordinate vote to
commit, the last subordinate crashes before receiving the PREPARE msg

 The subordinates that did not crash
— Will receive the ABORT from the coordinator
— Write an abort log record
— Will abort the transaction and “forget” it

2. 2PC - Solution

A coordinator sends PREPARE messages, all but one subordinate vote to
commit, the last subordinate crashes before receiving the PREPARE msg

e The subordinate that crashed

— After recovery will find that a transaction was
executing at the time of the crash, but no commit log
been written

— The recovery process will abort the transaction
— Write an abort log record
— Will abort the transaction and “forget” it

