
CSE 444: Database Internals

Section 2: Indexing

Plan for the Sections

• We will go through examples together

• Should be a good practice for the homework
problems

• Ideas, suggestions, comments, feedback are always
welcome

– write your thoughts on discussion board

Consider the following database schema:

Field Name Data Type Size on disk

Id (primary key) Unsigned INT 4 bytes

firstName Char(50) 50 bytes

lastName Char(50) 50 bytes

emailAddress Char(100) 100 bytes

Scenario

Total records in the database = 5,000,000

Length of each record = 4+50+50+100 = 204 bytes

Let the default block size be 1,024 bytes

Therefore,

We will have 1024/204 = 5 records per disk block

Also, No. of blocks needed for the entire table =

5000000/5 = 1,000,000 blocks

Scenario

Suppose you want to find the person with a
particular id (say 5000)

What is the best way to do so?

Scenario

Linear Search

No. of block accesses = 1000000/2 = 500,000

Binary Search

No. of block accesses = log2 1000000 = 19.93 = 20

Scenario

Now, suppose you want to find the person having
firstName = ‘John’

Here, the column isn’t sorted and does not hold
an unique value.

What is the best way to do search for the records?

Scenario

Solution: Create an index on the firstName column

The schema for an index on firstName is:

Field Name Data Type Size on disk

firstName Char(50) 50 bytes

(record pointer) Special 4 bytes

Scenario

Total records in the database = 5,000,000

Length of each index record = 4+50 = 54 bytes

Let the default block size be 1,024 bytes

Therefore,

We will have 1024/54 = 18 records per disk block

Also, No. of blocks needed for the entire table =

5000000/18 = 277,778 blocks

Scenario

Now, a binary search on the index will result in

log2 277778 = 18.08 = 19 block accesses.

Also, to find the address of the actual record,
which requires a further block access to read,
bringing the total to 19 + 1 = 20 block accesses.

Thus, indexing results in a much better
performance as compared to searching the entire
database.

Scenario

Indexes: Useful for search query / range query /
joins

Revisit Tweet Example:

 Tweets(tid, user, time, content)

Tweet Relation in a Sequential File

• File is sorted on “tid”

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

Magda Balazinska - CSE 444, Spring 2013

Index Classification

• Primary/Secondary

• Dense/Sparse

• Clustered/Unclustered

• Question: Draw a secondary dense index on “user”

13

Ex1. Secondary Dense Index

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

Ex1. Secondary Dense Index (user)

• Dense: an “index key” (not database key) for every database record
• Secondary: cannot reorder data, does not determine data location
• Also, Unclustered: records close in index may be far in data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

1

1

2

2

2

3

4

4

Ex1. Alternative solution

• Convenient way to avoid repeating values and saving

space is to use a level of indirection, called buckets,
between the secondary index file and the data file

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

1

2

3

4

Buckets

• Question: Draw a primary dense index on
“tid”

Ex2. Primary Dense Index (tid)

10 1 05:03:00 “…..”

20 2 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

Ex2. Primary Dense Index (tid)

• Dense: an “index key” for every database record
– (In this case) every “database key” appears as an “index key”

• Primary: determines the location of indexed records
• Also, Clustered: records close in index are close in data

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

20

30

40

50

60

70

80

Primary Clustered Index

Vs.

Secondary Unclustered Index?

Clustered Index can be made Sparse

 (normally one key per page)

• Question: Draw a primary sparse index on
“tid”

Ex3. Primary Sparse Index (tid)

• Only one index file page instead of two

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

30

50

70

Discussion

• Primary/Secondary
– Primary: common in queries, efficiency (one tuple/key)
– Secondary: more useful when “almost a key”

• Clustered/Unclustered

– Clustered:
• fewer data page read, can have sparse index
• expensive to maintain, at most one per file

• Dense/Sparse
– Sparse: smaller, only for clustered index, at most one per file
– Dense: multiple dense indexes, useful in some optimization (inverted

data file)

• How to decide which indexes to create
– Overhead (read/write index page, updates, deletions)
– Depends on workload (Example in sec 8.4)

Multiple Levels of Index

• Useful when index file is big and is divided into multiple pages

• Efficient and standard implementation: B+ trees

– balanced, good for both range and search query

10 2 05:03:00 “…..”

20 1 12:05:07 “…..”

30 2 18:12:00 “…..”

40 3 00:16:13 “…..”

50 4 10:10:13 “…..”

60 1 04:09:07 “…..”

70 2 12:08:34 “…..”

80 4 11:08:09 “…..”

1 record

1 page

tid user time content

10

30

50

70

90

110

130

150

10

90

170

250

.

.

.

.

.

.

.

.

• Tomorrow – Lec 6:

– B+ Trees

– Hash-based Index

• Not good for range query

