CSE 444

Lecture 28: Provenance

Announcements

- Quiz section on Thursday: canceled
- Lecture on Friday: canceled
- Lab 4 / Lab 6: due on Friday night
- Final writeup: on on Saturday night
- UW Course Evaluations:
 Online <u>https://uw.iasystem.org/survey/130405</u>
 Until June 12, 2014

Data Provenance

Data Provenance

- Provenance inside the DBMS

 Will discuss today
- Provenance outside of the DBMS
 - In workflows: keep track of which dataset was produced by what program, which version, on what date, and using what input data
 - Much more messy; there is a standard, OPM (Open Provenance Model)

Provenance Annotations

- Some query produces an output table T(A,B,C)
- We store it over some period of time
- Later we ask: "where did this tuple come from?"
- The "provenance annotation" answers this.

Α	В	С
a1	b1	c1
a2	b1	c1
a2	b2	c2
a2	b2	c3

provenance1 provenance2 provenance3 provenance4

Provenance Annotations

- Start by annotating each tuple in the original database with a unique identifier; can be the Tuple Id (TID)
- Next, compute the provenance expression inductively, based on the query plan

Join Operator

Projection Operator

Union Operator

Α	В	
a1	b1	X1
a2	b2	X2+Y1
a3	b3	X3

Selection Operator

Α	В	
a1	b1	X1
a1	b2	X2

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Selection Operator

Α	В	
a1	b1	X1 · 1
a1	b2	X2 · 1
a2	b1	X3·0
a2	b2	X4 · 0
a2	b3	X5·0

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Α	В	С	
а	b	С	$X \cdot X$
d	b	е	Y·Y
d	g	е	Υ·Ζ
f	b	е	Ζ·Υ
f	g	е	Z·Z

 $\sigma_{C=e}(R) =$

R

Α	В	С	
а	b	С	$0 = \mathbf{X} \cdot 0$
d	b	е	$Y = Y \cdot 1$
f	g	е	Z = Z · 1

Complex Example

$\sigma_{\mathsf{C=e}} \Pi_{\mathsf{AC}}(\ \Pi_{\mathsf{AC}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R}) \cup \Pi_{\mathsf{AB}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R})) =$

R

Α	В	С	
а	b	С	Х
d	b	е	Y
f	g	е	Ζ

Α	С	
а	С	$(X \cdot X + X \cdot X) \cdot 0 = 0 \cdot 2 \cdot \mathbf{X}^2 = 0$
а	е	$X \cdot Y \cdot 1 = X \cdot Y$
d	С	$Y \cdot X \cdot 0 = 0$
d	е	$(Y \cdot Y + Y \cdot Z + Y \cdot Y) \cdot 1 = 2 \cdot Y^2 + Y \cdot Z$
f	е	$(Z \cdot Z + Z \cdot Y + Z \cdot Z) \cdot 1 = 2 \cdot Z^2 + Y \cdot Z$

Discuss in class what these annotations mean

Independence of Plan

Independence of Plan

Do these two plans compute the same provenance expression for the output (a)?

V(x) := S(x)V(x) := T(x)q(x) := R(x), V(x)

Identities on Provenance Expressions

Identities on Provenance Expressions

Fact: if we compute annotations in a commutative semiring, then the final result is the same for all plans that are equivalent under set semantics

$\sigma_{\mathsf{C=e}} \Pi_{\mathsf{AC}}(\ \Pi_{\mathsf{AC}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R}) \cup \Pi_{\mathsf{AB}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R})) =$

$$\begin{array}{c|cc} A & C \\ \hline a & c \\ a & e \\ \hline d & e \\ f & e \\ \end{array} \begin{array}{c} X \cdot Y \\ 2 \cdot Y^2 + Y \cdot Z \\ 2 \cdot Z^2 + Y \cdot Z \end{array}$$

Q: Suppose we delete the tuple (d,b,e) from R. Which tuple(s) disappear from the result?

$\sigma_{\mathsf{C=e}} \Pi_{\mathsf{AC}}(\ \Pi_{\mathsf{AC}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R}) \cup \Pi_{\mathsf{AB}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R})) =$

Q: Suppose we delete the tuple (d,b,e) from R. Which tuple(s) disappear from the result?

A: Set **Y**=0

$\sigma_{\mathsf{C=e}} \Pi_{\mathsf{AC}}(\ \Pi_{\mathsf{AC}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R}) \cup \Pi_{\mathsf{AB}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R})) =$

$$\begin{array}{c|c} A & C \\ \hline a & c \\ 0 \\ \hline a & e \\ \hline d & e \\ f & e \\ 2 \cdot Y^2 + Y \cdot Z \\ \hline \end{array}$$

Q: Suppose each tuple in R occurs **3 times** (bag semantics). How many times occurs each tuple in the answer?

$\sigma_{\mathsf{C=e}} \Pi_{\mathsf{AC}}(\ \Pi_{\mathsf{AC}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R}) \cup \Pi_{\mathsf{AB}}(\mathsf{R}) \bowtie \Pi_{\mathsf{BC}}(\mathsf{R})) =$

Q: Suppose each tuple in R occurs **3 times** (bag semantics). How many times occurs each tuple in the answer?

Application: A Simpler Provenance of Sets of Contributing Tuples $\sigma_{C=e} \prod_{AC} (\prod_{AC}(R) \bowtie \prod_{BC}(R) \cup \prod_{AB}(R) \bowtie \prod_{BC}(R)) =$

Trace only the set of input tuples that contributed to an output tuple

This is also a semi-ring! Which one?

CSE444 - Spring 2014

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Α	В	С	
а	b	С	X=C
d	b	е	Y=P
f	g	е	Z=T

Α	С	
а	С	$2 \cdot X^2 = ?$
а	е	X·Y = ?
d	е	$2 \cdot Y^2 + Y \cdot Z = ?$
f	е	$2 \cdot Z^2 + Y \cdot Z = ?$

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)?

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)? A: S

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)? A: S

Q: Eliminate duplicates {A, A, A,A} labeled T, C, C, S. What is the label of A?

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A,B)? A: S

Q: Eliminate duplicates {A, A, A,A} labeled T, C, C, S. What is the label of A? A: C

(A, min, max, 0, P), where A = P < C < S < T < 0

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... = 0

Α	С	
а	С	$2 \cdot X^2 = C$
а	е	$X \cdot Y = C$
d	е	$2 \cdot Y^2 + Y \cdot Z = C$
f	е	$2 \cdot Z^2 + Y \cdot Z = T$

(A, min, max, 0, P), where A = P < C < S < T < 0

Summary

- In many applications it is critical to record the provenance of the data
- Fine grained provenance:
 - Inside the database system
 - Clear semantics that aligns to relational queries
 - This is what we discussed today
- Coarse grained provenance:
 - Lossy, by necessity
 - Trade off accuracy for size