CSE 444

Lecture 28:
Provenance

Announcements

- Quiz section on Thursday: canceled
- Lecture on Friday: canceled
- Lab 4 / Lab 6: due on Friday night
- Final writeup: on on Saturday night
- UW Course Evaluations:
- Online https://uw.iasystem.org/survey/130405
- Until June 12, 2014

Data Provenance

Data Provenance

- Provenance inside the DBMS
- Will discuss today
- Provenance outside of the DBMS
- In workflows: keep track of which dataset was produced by what program, which version, on what date, and using what input data
- Much more messy; there is a standard, OPM (Open Provenance Model)

Provenance Annotations

- Some query produces an output table $T(A, B, C)$
- We store it over some period of time
- Later we ask: "where did

A	B	C
a1	b1	c1
a2	b1	c1
a2	b2	c2
a2	b2	c3

provenance1
provenance2
provenance3
provenance4 this tuple come from?"

- The "provenance annotation" answers this.

Provenance Annotations

- Start by annotating each tuple in the original database with a unique identifier; can be the Tuple Id (TID)

A	B
a1	b1
a2	b1
a2	b2

- Next, compute the provenance expression inductively, based on the query plan

Join Operator

Projection Operator

Union Operator

Selection Operator

$\sigma_{A=a 1}$	
A	B
a1	b1
a1	b2
a2	b1
a2	b2
a2	b3

A	B
a1	b1
a1	b2

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Selection Operator

$\sigma_{A=a 1}$	
A	B
a1	b1
a1	b2
a2	b1
a2	b2
a2	b3

A	B
a1	b1
a1	b2
a2	b1
a2	b2
a2	b3

We could simply remove the tuples filtered out. But it's better to keep them around (we'll see why). What is their annotation?

Simple Example 1

$\Pi_{A C}(R) \bowtie \Pi_{B C}(R)=$

R

A	B	C
a	b	c
X	X	
d	b	e
f	y	e
Z		

Simple Example 1

$\Pi_{A C}(R) \bowtie \Pi_{B C}(R)=$

R				$\prod_{\mathrm{AC}}(\mathrm{R})$		
A	B	C		A	C	
a	b	c	X	a	c	X
d	b	e	Y	d	e	
f	g	e	Z	f	e	

Simple Example 1

$\Pi_{\mathrm{AC}}(R) \bowtie \Pi_{\mathrm{BC}}(R)=$

R				$\prod_{A C}(\mathrm{R})$			$\prod_{B C}(\mathrm{R})$		
A	B	C		A	C		B	C	
a	b	c	X	a	c	X	b	c	X
d	b	e	Y	d	e	Y	b	e	
f	g	e	Z	f	e	Z	g	e	Z

Simple Example 1

$\Pi_{\mathrm{AC}}(R) \bowtie \Pi_{\mathrm{BC}}(R)=$

R			$\prod_{\mathrm{AC}}(\mathrm{R})$				$\prod_{B C}(\mathrm{R})$			A	B	C		
A	B	C	X	A	C	X	B	C	x	a	b	c		X
a	b	c		a	c		b	c		d	b	e		Y
d	b	e	Y	d	e	Y	b	e	Y	d	g	e		Z
f	g	e		f	e	Z		e		f	b	e		Y
							9			f	g	e		

Simple Example 2

$$
\sigma_{C=e}(R)=
$$

R

A	B	C
a	b	c
	X	
d	b	e
	Y	
f	g	e
Z		

A	B	C	
a	b	C	$0=X \cdot 0$
d	b	e	$Y=Y \cdot 1$
f	g	e	$\mathbf{Z}=\mathbf{Z} \cdot 1$

Complex Example

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

R

A	B	C
a	b	c
d	b	e
f	y	e
Z		

A	C	
a	c	$(X \cdot X+X \cdot X) \cdot 0=0 \cdot 2 \cdot X^{2}=0$
a	e	$X \cdot Y \cdot 1=X \cdot Y$
d	c	$Y \cdot X \cdot 0=0$
d	e	$(Y \cdot Y+Y \cdot Z+Y \cdot Y) \cdot 1=2 \cdot Y^{2}+Y \cdot Z$
f	e	$(Z \cdot Z+Z \cdot Y+Z \cdot Z) \cdot 1=2 \cdot Z^{2}+Y \cdot Z$

Discuss in class what these annotations mean

Independence of Plan

$q(x, y):=R(x), S(x, y), T(y)$

Do these plans compute the same provenance for the output (a, b) ?

$\mathrm{R}=$

S=

Independence of Plan

$$
\begin{aligned}
& q(x):=R(x), S(x) \\
& q(x):=R(x), T(x)
\end{aligned}
$$

Do these two plans compute the same provenance expression for the output (a)?

$$
\begin{aligned}
& V(x):=S(x) \\
& V(x):=T(x) \\
& q(x):=R(x), V(x)
\end{aligned}
$$

$\mathrm{R}=$| x |
| :--- |
| a |
| a | $\mathrm{S} \quad \mathrm{S}$| x |
| :--- |
| a |
| y |$\quad \mathrm{T}=$| x |
| :--- |
| a |
| Z |

Identities on Provenance Expressions

Definition. A structure $(\mathrm{K},+, \cdot, 0,1)$ is called a commutative semiring if:

1. $(\mathrm{K},+, 0)$ is a commutative monoid:
a. + is associative: $\quad(x+y)+z=x+(y+z)$
b. + is commutative: $\quad x+y=y+x$
c. 0 is the identity for $+: \quad x+0=0+x=x$
2. $(K, \cdot, 1)$ is a commutative monoid:
a. ... (similar identities)
3. distributes over + : $\quad x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all x :
$x \cdot 0=0 \cdot x=0$

Identities on Provenance Expressions

Definition. A structure $(\mathrm{K},+, \cdot, 0,1)$ is called a commutative semiring if:

1. $(\mathrm{K},+, 0)$ is a commutative monoid:
a. + is associative: $\quad(x+y)+z=x+(y+z)$
b. + is commutative: $\quad x+y=y+x$
c. 0 is the identity for $+: \quad x+0=0+x=x$
2. ($\mathrm{K}, \cdot, 1$) is a commutative monoid:
a. ... (similar identities)
3. distributes over +: $\quad x \cdot(y+z)=x \cdot y+x \cdot z$
4. For all x :
$x \cdot 0=0 \cdot x=0$

Fact: if we compute annotations in a commutative semiring, then the final result is the same for all plans that are equivalent under set semantics

Example

$q(x, u):=R(x, y), S(y, z), T(z, u)$

In class: compute the provenance of the output (a, b) for both plans.

x	y	X1	y	z	Y1	z	u	
a	b1		b1	c1		c1	d	Z1
a	b2	X2	b1	c2	Y2	c2	d	Z2
			b2	c2	Y3			

Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	0
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

Q: Suppose we delete the tuple ($\mathrm{d}, \mathrm{b}, \mathrm{e}$) from R . Which tuple(s) disappear from the result?

Applications

$$
\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=
$$

$\mathrm{R}=$

A	B	C
a	b	c
X		
d	b	e
f	y	e
Z		

A	C	
a	c	0
a	e	X•Y
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

A	C
a	c
a	e
d	e
f	e

Q: Suppose we delete the tuple ($\mathrm{d}, \mathrm{b}, \mathrm{e}$) from R.
A: Set $\mathrm{Y}=0$

Applications

$$
\sigma_{\mathrm{C}=\mathrm{e}} \prod_{\mathrm{AC}}\left(\prod_{\mathrm{AC}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R}) \cup \prod_{\mathrm{AB}}(\mathrm{R}) \bowtie \prod_{\mathrm{BC}}(\mathrm{R})\right)=
$$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	0
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

Q: Suppose each tuple in R occurs 3 times (bag semantics). How many times occurs each tuple in the answer?

Applications

$$
\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{\mathrm{BC}}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{\mathrm{BC}}(R)\right)=
$$

$R=$

A	B	C
a	b	c
	X	
d	b	e
f	g	e

A	C	
a	c	0
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

A	C
a	C
a	e
d	e
f	e

Q: Suppose each tuple in R occurs 3 times (bag semantics).
A. Set $X=Y=Z=3$ How many times occurs each tuple in the answer?

Application: A Simpler Provenance of Sets of Contributing Tuples

$\sigma_{C=e} \Pi_{A C}\left(\Pi_{A C}(R) \bowtie \Pi_{B C}(R) \cup \Pi_{A B}(R) \bowtie \Pi_{B C}(R)\right)=$

$\mathrm{R}=$		
A	B	C
a	b	c
d	b	e
f	g	e

A	C	
a	c	0
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

$\rightarrow \quad$| A | C | |
| :---: | :---: | :--- |
| a | c | - |
| a | e | X, Y |
| d | e | Y, Z |
| f | e | Y, Z |

Trace only the set of input tuples that contributed to an output tuple
This is also a semi-ring! Which one?

Application: Security

Discretionary Access Control [LaPadula]

- Public $=P$
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

A	C	
a	c	$2 \cdot X^{2}=?$
a	e	$X \cdot Y=?$
d	e	$2 \cdot Y^{2}+Y \cdot Z=?$
f	e	$2 \cdot Z^{2}+Y \cdot Z=?$

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S :

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential $=\mathrm{C}$
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A, B) ?

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A, B) ?
A: S

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A, B) ? A: S

Q: Eliminate duplicates $\{A, A, A, A\}$ labeled T, C, C, S. What is the label of A ?

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

Alice has clearance S:

- Alice can read C data
- Alice cannot read T data
- Alice can write T data
- Alice cannot read C data

Why??

Q: Join record A labeled C with record B labeled S. What is the label of (A, B) ? A: S

Q: Eliminate duplicates $\{A, A, A, A\}$ labeled T, C, C, S. What is the label of A ? A: C

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

> What are the labels of these records?

A	C	
a	c	$2 \cdot X^{2}$
a	e	$X \cdot Y$
d	e	$2 \cdot Y^{2}+Y \cdot Z$
f	e	$2 \cdot Z^{2}+Y \cdot Z$

(A, min, max, 0, P), where A $=$ P $<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$

Application: Security

Discretionary Access Control [LaPadula]

- Public = P
- Confidential = C
- Secret = S
- Top Secret = T
- No Such Thing... $=0$

A	C	
a	c	$2 \cdot X^{2}=C$
a	e	$X \cdot Y=C$
d	e	$2 \cdot Y^{2}+Y \cdot Z=c$
f	e	$2 \cdot Z^{2}+Y \cdot Z=T$

(A, min, max, 0, P), where A $=\mathrm{P}<\mathrm{C}<\mathrm{S}<\mathrm{T}<0$

Summary

- In many applications it is critical to record the provenance of the data
- Fine grained provenance:
- Inside the database system
- Clear semantics that aligns to relational queries
- This is what we discussed today
- Coarse grained provenance:
- Lossy, by necessity
- Trade off accuracy for size

