
CSE 444: Database Internals

Lectures 25
NoSQL: Key Value Stores

1 CSE 444 - Spring 2014

Annoucements

•  Tomorrow’s sections: Jingjing will demonstrate
parts of Labs 4 and 6

•  HW6: due this Friday

•  Lab 4 or 6: due next Friday

CSE 444 - Spring 2014 2

Final Project Instructions

http://courses.cs.washington.edu/courses/
cse444/14sp/labs/project.html
1.  Design and implementation:

–  Choose between Lab 4 or 6
–  Each has mandatory part extensions

2.  Testing and evaluation
–  You need to write your one JUnit tests

3.  Final report
–  See instructions on the Web

CSE 444 - Spring 2014 3

References

•  Scalable SQL and NoSQL Data Stores, Rick
Cattell, SIGMOD Record, December 2010 (Vol.
39, No. 4)

•  Dynamo: Amazon’s Highly Available Key-
value Store. By Giuseppe DeCandia et. al.
SOSP 2007.

•  Online documentation: Amazon DynamoDB.

CSE 444 - Spring 2014 4

NoSQL

•  Main objective: implement distributed state
–  Different objects stored on different servers
–  Same object replicated on different servers

•  Main idea: give up some of the ACID
constraints to improve performance

•  Simple interface:
–  Write (=Put): needs to write all replicas
–  Read (=Get): may get only one

•  Eventual consistency ß Strong consistency

CSE 444 - Spring 2014 5

NoSQL

“Not Only SQL” or “Not Relational”.
Six key features:
1.  Scale horizontally “simple operations”
2.  Replicate/distribute data over many servers
3.  Simple call level interface (contrast w/ SQL)
4.  Weaker concurrency model than ACID
5.  Efficient use of distributed indexes and RAM
6.  Flexible schema

CSE 444 - Spring 2014 6

Cattell, SIGMOD Record 2010

ACID v.s. BASE

•  ACID = Atomicity, Consistency, Isolation, and
Durability

•  BASE = Basically Available, Soft state,
Eventually consistent

CSE 444 - Spring 2014 7

Data Models

•  Tuple = row in a relational db

•  Extensible record = families of attributes have a
schema, but new attributes may be added

•  Document = nested values, extensible records
(XML, JSON, protobuf, attribute-value pairs)

•  Object = like in a programming language, but

without methods

CSE 444 - Spring 2014 8

Different Types of NoSQL

Taxonomy based on data models:
•  Key-value stores

–  e.g., Project Voldemort, Memcached

•  Extensible Record Stores
–  e.g., HBase, Cassandra, PNUTS

•  Document stores
–  e.g., SimpleDB, CouchDB, MongoDB

•  New types of RDBMSs.. not really NoSQL

CSE 444 - Spring 2014 9

Cattell, SIGMOD Record 2010

Today

Friday

Monday

Key-Value Store: Dynamo

•  Dynamo: Amazon’s Highly Available Key-
value Store. By Giuseppe DeCandia et. al.
SOSP 2007.

•  Main observation:
–  “There are many services on Amazon’s platform that

only need primary-key access to a data store.”
–  Best seller lists, shopping carts, customer

preferences, session management, sales rank,
product catalog

CSE 444 - Spring 2014 10

Basic Features

•  Data model: (key,value) pairs
–  Values are binary objects (blobs)
–  No further schema

•  Operations
–  Insert/delete/lookup by key
–  No operations across multiple data items

•  Consistency
–  Replication with eventual consistency
–  Goal to NEVER reject any writes (bad for business)
–  Multiple versions with conflict resolution during reads

CSE 444 - Spring 2014 11

Operations

•  get(key)
–  Locates object replicas associated with key
–  Returns a single object
–  Or a list of objects with conflicting versions
–  Also returns a context

•  Context holds metadata including version
•  Context is opaque to caller

•  put(key, context, object)
–  Determines where replicas of object should be placed
–  Location depends on key value
–  Data stored persistently including context

CSE 444 - Spring 2014 12

Storage: Distributed Hash Table

Implements a distributed storage
•  Each key-value pair (k,v) is stored at some server h(k)
•  API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)
•  Problem 1: a client knows only one server, doesn’t know

how to access h(k)

•  Problem 2. if new server joins, then N à N+1, and the
entire hash table needs to be reorganized

•  Problem 3: we want replication, i.e. store the object at
more than one server

CSE 444 - Spring 2014 13

Distributed Hash Table
h=0 h=2n-1

A

B

C
D

Responsibility of B

Responsibility of C

Responsibility of A

CSE 444 - Spring 2014 14

Distributed Hash Table Details

•  This type of hashing called “consistent hashing”

•  Basic approach leads to load imbalance
–  Solution: Use V virtual nodes for each physical node
–  Virtual nodes provide better load balance
–  Nb of virtual nodes can vary based on capacity

CSE 444 - Spring 2014 15

Problem 1: Routing
A client doesn’t know server h(k), but some other server

•  Naive routing algorithm:

–  Each node knows its neighbors
–  Send message to nearest neighbor
–  Hop-by-hop from there
–  Obviously this is O(n), so no good

•  Better algorithm: “finger table”
–  Memorize locations of other nodes in the ring
–  a, a + 2, a + 4, a + 8, a + 16, ... a + 2n – 1
–  Send message to closest node to destination
–  Hop-by-hop again: this is log(n)

CSE 444 - Spring 2014 16

Problem 1: Routing
h=0 h=2n-1

A

B

D

C

Read(k)

F

E

Client
 only “knows”

server A

Redirect
request

 to A + 2m

G

 to D + 2p

 to F + 1

Found
Read(k) !

h(k) handled
by server G

O(log n)
17

Problem 2: Joining
h=0 h=2n-1

A

B

C D

Responsibility of D

When X joins:
select random ID

18

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of D 19

Problem 2: Joining
h=0 h=2n-1

A

B

C D

When X joins:
select random ID

X Responsibility of X

Redistribute
the load at D

Responsibility of D 20

Problem 3: Replication

•  Need to have some degree of replication to
cope with node failures

•  Let N=degree of replication

•  Assign key k to h(k), h(k)+1, …, h(k)+N-1

CSE 444 - Spring 2014 21

Problem 3: Replication
h=0 h=2n-1

A

B

C
D

Responsibility of B,C,D

Responsibility of C,D,A

Responsibility of A,B,C

CSE 444 - Spring 2014 22

Additional Dynamo Details

•  Each key assigned to a coordinator
•  Coordinator responsible for replication

–  Replication skips virtual nodes that are not distinct
physical nodes

•  Set of replicas for a key is its preference list
•  One-hope routing:

–  Each node knows preference list of each key

•  “Sloppy quorum” replication
–  Each update creates a new version of an object
–  Vector clocks track causality between versions

CSE 444 - Spring 2014 23

Vector Clocks

•  An extension of Multiversion Concurrency
Control (MVCC) to multiple servers

•  Standard MVCC:
each data item X has a timestamp t:
 X4, X9, X10, X14, …, Xt

•  Vector Clocks:
X has set of [server, timestamp] pairs
 X([s1,t1], [s2,t2],…)

CSE 444 - Spring 2014 24

Vector Clocks
Dynamo:2007

25

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage

collected)
• 

• 

• 

CSE 444 - Spring 2014 26

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage

collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

• 

• 

CSE 444 - Spring 2014 27

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage

collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:

 D4 ([SX,2], [SZ,1])
• 

CSE 444 - Spring 2014 28

Vector Clocks: Example
•  A client writes D1 at server SX:

 D1 ([SX,1])
•  Another client reads D1, writes back D2; also

handled by server SX:
 D2 ([SX,2]) (D1 garbage

collected)
•  Another client reads D2, writes back D3;

handled by server SY:
 D3 ([SX,2], [SY,1])

•  Another client reads D2, writes back D4;
handled by server SZ:

 D4 ([SX,2], [SZ,1])
•  Another client reads D3, D4: CONFLICT !

CSE 444 - Spring 2014 29

Vector Clocks: Meaning

•  A data item D[(S1,v1),(S2,v2),…] means a
value that represents version v1 for S1, version
v2 for S2, etc.

•  If server Si updates D, then:
–  It must increment vi, if (Si, vi) exists
–  Otherwise, it must create a new entry (Si,1)

CSE 444 - Spring 2014 30

Vector Clocks: Conflicts

•  A data item D is an ancestor of D’ if for all
(S,v)∈D there exists (S,v’)∈D’ s.t. v ≤ v’

•  Otherwise, D and D’ are on parallel branches,
and it means that they have a conflict that
needs to be reconciled semantically

CSE 444 - Spring 2014 31

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 32

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 33

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 34

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 35

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 36

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 37

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 38

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 39

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 40

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2])

Vector Clocks: Conflict or not?

CSE 444 - Spring 2014 41

Data 1 Data 2 Conflict ?

([SX,3],[SY,6]) ([SX,3],[SZ,2]) Yes

([SX,3]) ([SX,5]) No

([SX,3],[SY,6]) ([SX,3],[SY,6],[SZ,2]) No

([SX,3],[SY,10]) ([SX,3],[SY,6],[SZ,2]) Yes

([SX,3],[SY,10]) ([SX,3],[SY,20],[SZ,2]) No

(Sloppy) Quorum Read/Write

•  Parameters:
–  N = number of copies (replicas) of each object
–  R = minimum number of nodes that must participate

in a successful read
–  W = minimum number of nodes that must participate

in a successful write
•  Quorum: R+W > N
•  Sloppy Quorum (Dynamo): allow R+W ≤ N

CSE 444 - Spring 2014 42

Operation Execution

•  Write operations
–  Initial request sent to coordinator
–  Coordinator generates vector clock & stores locally
–  Coordinator forwards new version to all N replicas
–  If at least W-1 < N-1 nodes respond then success!

•  Read operations
–  Initial request sent to coordinator
–  Coordinator requests data from all N replicas
–  Once gets R responses, returns data

•  Sloppy quorum: Involve first N healthy nodes
CSE 444 - Spring 2014 43

Next Steps

Try Amazon DynamoDB
http://aws.amazon.com/dynamodb/

CSE 444 - Spring 2014 44

