CSE 444: Database Internals

Lectures 15 Optimistic Concurrency Control

Pessimistic v.s. Optimistic

- Pessimistic CC (locking)
 - Prevents unserializable schedules
 - Never abort for serializability (but may abort for deadlocks)
 - Best for workloads with high level of contention
- Optimistic CC (timestamp, validation, SI)
 - Assume schedule will be serializable
 - Abort when conflicts detected
 - Best for workloads with low level of contention

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation

Timestamps

Each transaction receives unique timestamp TS(T)

Could be:

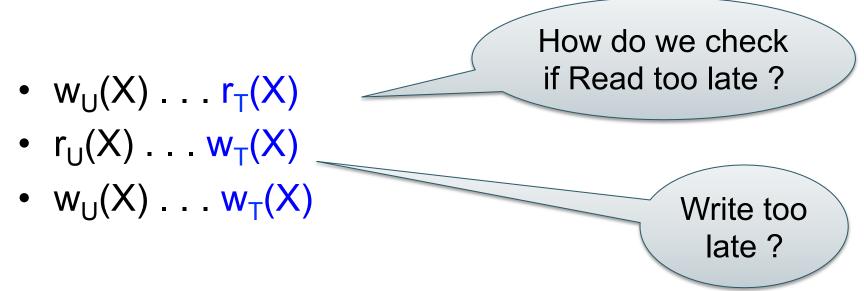
- The system's clock
- A unique counter, incremented by the scheduler

Timestamps

Main invariant:

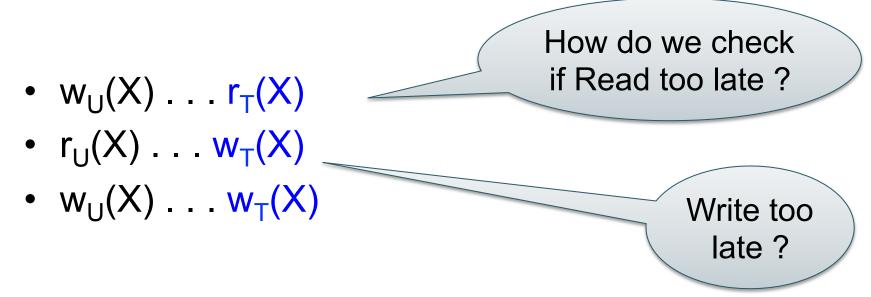
The timestamp order defines the serialization order of the transaction

Will generate a schedule that is view-equivalent to a serial schedule, and recoverable


Timestamps

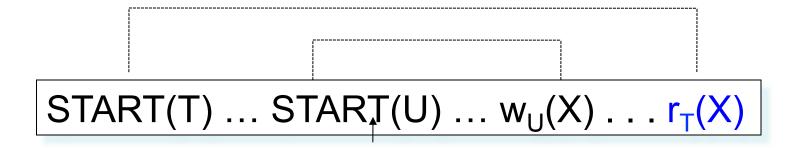
With each element X, associate

- RT(X) = the highest timestamp of any transaction U that read X
- WT(X) = the highest timestamp of any transaction U that wrote X
- C(X) = the commit bit: true when transaction with highest timestamp that wrote X committed

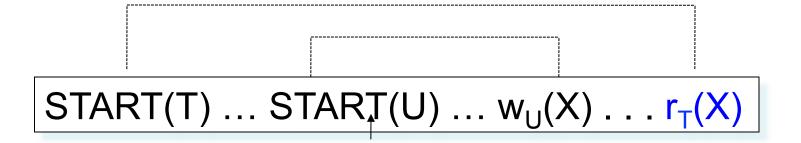

Main Idea

For any $r_T(X)$ or $w_T(X)$ request, check for conflicts:

Main Idea

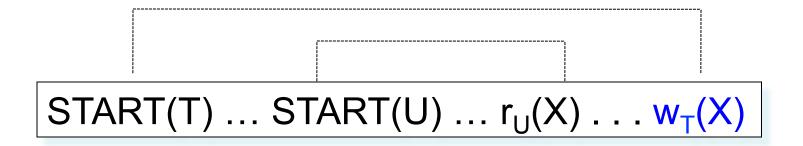

For any $r_T(X)$ or $w_T(X)$ request, check for conflicts:

When T requests $r_T(X)$, need to check $TS(U) \le TS(T)$

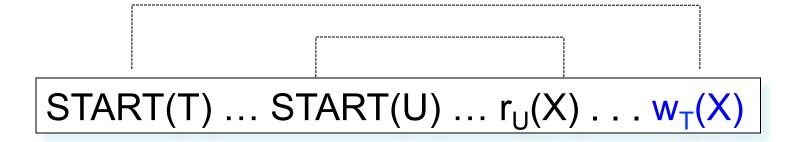

Read Too Late

• T wants to read X

Read Too Late


• T wants to read X

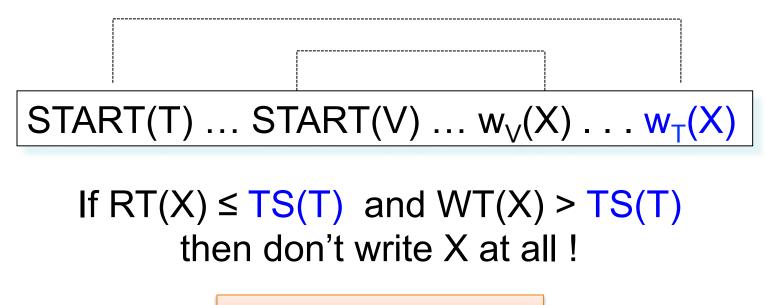
If WT(X) > TS(T) then need to rollback T !


Write Too Late

• T wants to write X

Write Too Late

• T wants to write X

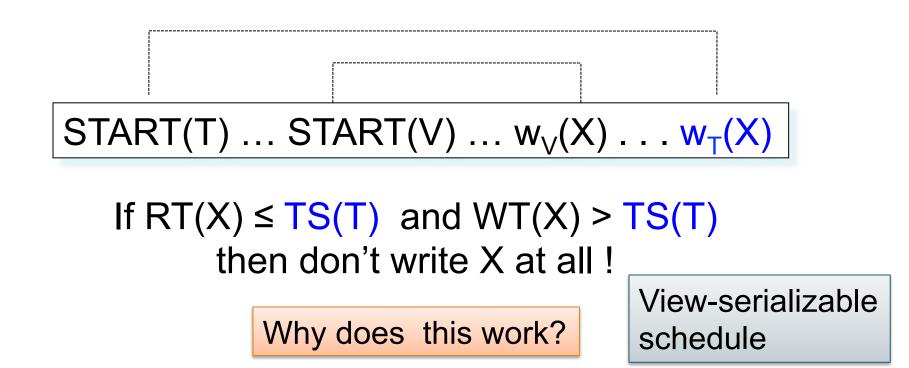


If RT(X) > TS(T) then need to rollback T !

Thomas' Rule

But we can still handle it:

• T wants to write X



Why does this work?

Thomas' Rule

But we can still handle it:

• T wants to write X

View-Serializability

• By using Thomas' rule we do obtain a viewserializable schedule

Summary So Far

Only for transactions that do not abort Otherwise, may result in non-recoverable schedule

Transaction wants to read element X If WT(X) > TS(T) then ROLLBACK Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to write element X If RT(X) > TS(T) then ROLLBACK Else if WT(X) > TS(T) ignore write & continue (Thomas Write Rule) Otherwise, WRITE and update WT(X) =TS(T)

Ensuring Recoverable Schedules

Recall:

- Schedule avoids cascading aborts if whenever a transaction reads an element, then the transaction that wrote it must have already committed
- Use the commit bit C(X) to keep track if the transaction that last wrote X has committed

Ensuring Recoverable Schedules

Read dirty data:

- T wants to read X, and WT(X) < TS(T)
- Seems OK, but...

START(U) ... START(T) ... w_U(X). . (r_T(X)... ABORT(U)

If C(X)=false, T needs to wait for it to become true

Ensuring Recoverable Schedules

Thomas' rule needs to be revised:

- T wants to write X, and WT(X) > TS(T)
- Seems OK not to write at all, but ...

If C(X)=false, T needs to wait for it to become true

Timestamp-based Scheduling

- When a transaction T requests r_T(X) or w_T(X), the scheduler examines RT(X), WT(X), C(X), and decides one of:
- To grant the request, or
- To rollback T (and restart with later timestamp)
- To delay T until C(X) = true

Timestamp-based Scheduling

RULES including commit bit

- There are 4 long rules in Sec. 18.8.4
- You should be able to derive them yourself, based on the previous slides
- Make sure you understand them !

READING ASSIGNMENT: 18.8.4

Timestamp-based Scheduling (Read 18.8.4 instead!)

Transaction wants to READ element X If WT(X) > TS(T) then ROLLBACK Else If C(X) = false, then WAIT Else READ and update RT(X) to larger of TS(T) or RT(X)

Transaction wants to WRITE element X If RT(X) > TS(T) then ROLLBACK Else if WT(X) > TS(T) Then If C(X) = false then WAIT else IGNORE write (Thomas Write Rule) Otherwise, WRITE, and update WT(X)=TS(T), C(X)=false

Summary of Timestamp-based Scheduling

- View-serializable
- Avoids cascading aborts (hence: recoverable)
- Does NOT handle phantoms
 - These need to be handled separately, e.g. predicate locks

Multiversion Timestamp

- When transaction T requests r(X) but WT(X) > TS(T), then T must rollback
- Idea: keep multiple versions of X: X_t, X_{t-1}, X_{t-2}, . . .

 $TS(X_t) > TS(X_{t-1}) > TS(X_{t-2}) > ...$

Details

- When w_T(X) occurs, create a new version, denoted X_t where t = TS(T)
- When r_T(X) occurs, find most recent version X_t such that t < TS(T) Notes:
 - WT(X_t) = t and it never changes
 - RT(X_t) must still be maintained to check legality of writes
- Can delete X_t if we have a later version X_{t1} and all active transactions T have TS(T) > t1

Example (in class)

$$X_3 \quad X_9 \quad X_{12} \quad X_{18}$$

$$R_6(X)$$
 -- what happens?
 $W_{14}(X)$ - what happens?
 $R_{15}(X)$ - what happens?
 $W_5(X)$ - what happens?

When can we delete X_3 ?

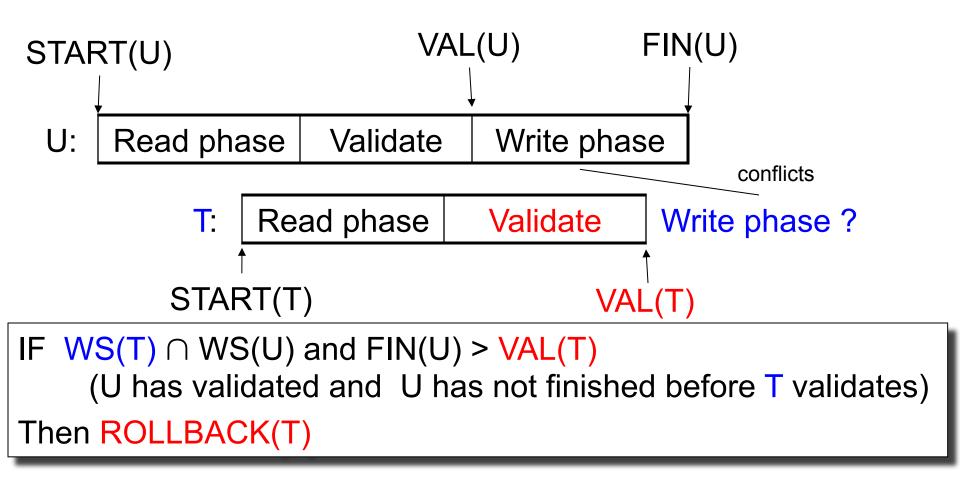
CSE 444 - Spring 2014

Example w/ Basic Timestamps T_2 T_3 T_4 Α T₁ 225 **RT=0** 150 200 175 WT=0 RT=150 $R_1(A)$ $W_1(A)$ WT=150 RT=200 $R_2(A)$ $W_2(A)$ WT=200 $R_3(A)$ Abort $R_4(A)$ RT=225

Example w/ Multiversion							
T ₁	T ₂	T ₃	T ₄	A ₀	A ₁₅₀	A ₂₀₀	
150	200	175	225				
R ₁ (A)				RT=150			
W ₁ (A)					Create		
	$R_2(A)$				RT=200		
	$W_2(A)$					Create	
		$R_3(A)$			RT=200		
		$W_3(A)$					
		abort					
			$R_4(A)$			RT=225	

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation


Concurrency Control by Validation

- Each transaction T defines:
 - Read set RS(T) = the elements it reads
 - Write set WS(T) = the elements it writes
- Each transaction T has three phases:
 - Read phase; time = START(T)
 - Validate phase (may need to rollback); time = VAL(T)
 - Write phase; time = FIN(T)

Main invariant: the serialization order is VAL(T)

Avoid $w_T(X) - w_U(X)$ Conflicts

Outline

- Concurrency control by timestamps (18.8)
- Concurrency control by validation (18.9)
- Snapshot Isolation
 - Not in the book, but good overview in Wikipedia
 - Better: pay attention in class!

SI Overview

- Each transactions receives a timestamp TS(T)
- Transaction T sees snapshot at time TS(T) of the database
- Write/write conflicts resolved by "first committer wins" rule
 - Loser gets aborted
- Read/write conflicts are ignored
- When T commits, its dirty pages are written to disk

SI Details

- Multiversion concurrency control:
 Versions of X: X_{t1}, X_{t2}, X_{t3}, ...
- When T reads X, return $X_{TS(T)}$.
- When T writes X (to avoid lost update):
 - If latest version of X is TS(T) then proceed
 - If C(X) = true then abort
 - If C(X) = false then wait
- When T commits, write its updates to disk

What Works and What Not

- No dirty reads (Why ?)
- No inconsistent reads (Why ?)
- No lost updates ("first committer wins")
- Moreover: no reads are ever delayed
- However: read-write conflicts not caught !

Write Skew

T1:	T2:
READ(X);	READ(Y);
if X >= 50	if Y >= 50
then $Y = -50$; WRITE(Y)	then $X = -50$; WRITE(X)
COMMIT	COMMIT

In our notation:

$$R_1(X), R_2(Y), W_1(Y), W_2(X), C_1, C_2$$

Starting with X=50,Y=50, we end with X=-50, Y=-50. Non-serializable !!!

Write Skews Can Be Serious

- Acidicland had two viceroys, Delta and Rho
- Budget had two registers: taXes, and spendYng
- They had high taxes and low spending...

```
Delta:

READ(taXes);

if taXes = 'High'

then { spendYng = 'Raise';

WRITE(spendYng) }

COMMIT

Rho:

READ(spendYng);

if spendYng = 'Low'

then {taXes = 'Cut';

WRITE(taXes) }

COMMIT
```

... and they ran a deficit ever since. ³⁸

Discussion: Tradeoffs

• Optimistic CC: Locks

- Great when there are many conflicts
- Poor when there are few conflicts
- Pessimistic CC: Timestamps, Validation, SI
 - Poor when there are many conflicts (rollbacks)
 - Great when there are few conflicts
- Compromise
 - READ ONLY transactions → timestamps
 - READ/WRITE transactions \rightarrow locks

Commercial Systems

Always check documentation!

- DB2: Strict 2PL
- SQL Server:
 - Strict 2PL for standard 4 levels of isolation
 - Multiversion concurrency control for snapshot isolation
- PostgreSQL: SI; recently: seralizable SI (!)
- Oracle: SI