
CSE 444: Database Internals

Lectures 13-14
Transactions

1 CSE 444 - Spring 2014

Announcements

•  Lab 2 is due TODAY
–  Lab 3 will be released today, part 1 due next Monday

•  HW4 is due on Wednesday
–  HW3 will be released on Thursday, due next week

•  544M: Paper 3 reading is due TODAY
–  Papers 4 and 5 are due on same day in a few weeks
–  Write-up should be 2 to 3 pages long since 2 papers

CSE 444 - Spring 2014 2

Motivating Example

CSE 444 - Spring 2014 3

Would like to treat
each group of

instructions as a unit

Client 1:
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

Client 2:
SELECT sum(money)
FROM Budget

Transaction

BEGIN TRANSACTION

[SQL statements]

COMMIT or ROLLBACK (=ABORT)

May be omitted:
first SQL query

starts txn

In ad-hoc SQL: each statement = one transaction

Definition: a transaction is a sequence of updates to the
database with the property that either all complete,
or none completes (all-or-nothing).

Motivating Example

Without START TRANSACTION,
each SQL command
is a transaction

START TRANSACTION
UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

COMMIT (or ROLLBACK)

SELECT sum(money)
FROM Budget

CSE 444 - Spring 2014 6

Transactions

•  Major component of database systems
•  Critical for most applications; arguably more so

than SQL

•  Turing awards to database researchers:
–  Charles Bachman 1973
–  Edgar Codd 1981 for inventing relational dbs
–  Jim Gray 1998 for inventing transactions

CSE 444 - Spring 2014 7

ROLLBACK

•  If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

•  This causes the system to “abort” the
transaction
–  Database returns to a state without any of the

changes made by the transaction

•  Several reasons: user, application, system

CSE 444 - Spring 2014 8

ACID Properties

•  Atomicity: Either all changes performed by
transaction occur or none occurs

•  Consistency: A transaction as a whole does not
violate integrity constraints

•  Isolation: Transactions appear to execute one
after the other in sequence

•  Durability: If a transaction commits, its changes
will survive failures

CSE 444 - Spring 2014 9

What Could Go Wrong?

Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems
–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems
–  Later lectures

•  Transaction may need to abort

CSE 444 - Spring 2014 10

Different Types of Problems
Client 1: INSERT INTO SmallProduct(name, price)

 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads

CSE 444 - Spring 2014 11

Different Types of Problems

Client 1:
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

CSE 444 - Spring 2014 12

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
 WHERE Account.number = ‘my-account’

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

Aborted by
system

13

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that
has not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The
second one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

CSE 444 - Spring 2014 14

Terminology Needed For Lab 3
Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE (lab 3)
•  Highest performance: STEAL/NO-FORCE (lab 5)
•  We will get back to this next week

CSE 444 - Spring 2014 15

Outline

•  Transactions motivation, definition, properties

•  Concurrency Control (the C in ACID)
–  This week

•  Recovery from failures (the A in ACID)
–  Next week

Schedules

CSE 444 - Spring 2014 16

A schedule is a sequence
of interleaved actions
from all transactions

Example

CSE 444 - Spring 2014 17

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

A and B are elements
in the database

t and s are variables
in tx source code

A Serial Schedule

CSE 444 - Spring 2014 18

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Serializable Schedule

CSE 444 - Spring 2014 19

A schedule is serializable if it is
equivalent to a serial schedule

A Serializable Schedule

CSE 444 - Spring 2014 20

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

This is a serializable schedule.
This is NOT a serial schedule

A Non-Serializable Schedule

CSE 444 - Spring 2014 21

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t) Why is it

non-serializable?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2014 22

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

Serializable Schedules

•  The role of the scheduler is to ensure that the
schedule is serializable

CSE 444 - Spring 2014 23

Q: Why not run only serial schedules ?
I.e. run one transaction after the other ?

A: Because of very poor throughput due to disk latency.

Lesson: main memory databases may schedule TXNs serially

Still Serializable, but…

CSE 444 - Spring 2014 24

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s + 200
WRITE(A,s)
READ(B,s)
s := s + 200
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

…we don’t expect the scheduler to schedule this

Schedule is serializable
because t=t+100 and
s=s+200 commute

Ignoring Details

•  Assume worst case updates:
–  We never commute actions done by transactions

•  As a consequence, we only care about reads and
writes
–  Transaction = sequence of R(A)’s and W(A)’s

CSE 444 - Spring 2014 25

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Conflicts

• Write-Read – WR
• Read-Write – RW
• Write-Write – WW

CSE 444 - Spring 2014 26

Conflict Serializability

CSE 444 - Spring 2014 27

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)

Conflict Serializability

•  Every conflict-serializable schedule is serializable
•  The converse is not true in general

CSE 444 - Spring 2014 28

Definition A schedule is conflict serializable
if it can be transformed into a serial
schedule by a series of swappings
of adjacent non-conflicting actions

Conflict Serializability

CSE 444 - Spring 2014 29

Example:
r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2014 30

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2014 31

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2014 32

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

Conflict Serializability

CSE 444 - Spring 2014 33

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

….

Testing for Conflict-Serializability

Precedence graph:
•  A node for each transaction Ti,
•  An edge from Ti to Tj whenever an action in Ti

conflicts with, and comes before an action in Tj

•  The schedule is serializable iff the precedence
graph is acyclic

CSE 444 - Spring 2014 34

Example 1

CSE 444 - Spring 2014 35

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

Example 1

CSE 444 - Spring 2014 36

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Example 2

CSE 444 - Spring 2014 37

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

Example 2

CSE 444 - Spring 2014 38

1 2 3

This schedule is NOT conflict-serializable

A
B

B

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2014 39

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ?

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2014 40

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Is this schedule conflict-serializable ? No…

View Equivalence

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

CSE 444 - Spring 2014 41

w1(X); w1(Y); w2(X); w2(Y); w3(Y);

w1(X); w2(X); w2(Y); w1(Y); w3(Y);

Lost write

Equivalent, but not conflict-equivalent

View Equivalence

CSE 444 - Spring 2014 42

T1 T2 T3
W1(X)

W2(X)
W2(Y)
CO2

W1(Y)
CO1

W3(Y)
CO3

T1 T2 T3
W1(X)
W1(Y)
CO1

W2(X)
W2(Y)
CO2

W3(Y)
CO3

Lost

Serializable, but not conflict serializable

View Equivalence
Two schedules S, S’ are view equivalent if:
•  If T reads an initial value of A in S,

then T reads the initial value of A in S’

•  If T reads a value of A written by T’ in S,
then T reads a value of A written by T’ in S’

•  If T writes the final value of A in S,
then T writes the final value of A in S’

View-Serializability

A schedule is view serializable if it is view
equivalent to a serial schedule

Remark:
•  If a schedule is conflict serializable,

then it is also view serializable
•  But not vice versa

CSE 444 - Spring 2014 44

Schedules with Aborted Transactions

•  When a transaction aborts, the recovery
manager undoes its updates

•  But some of its updates may have affected
other transactions !

CSE 444 - Spring 2014 45

Schedules with Aborted Transactions

CSE 444 - Spring 2014 46

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

What’s wrong?

Schedules with Aborted Transactions

CSE 444 - Spring 2014 47

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

Abort

Cannot abort T1 because cannot undo T2

What’s wrong?

Recoverable Schedules

A schedule is recoverable if:
•  It is conflict-serializable, and
•  Whenever a transaction T commits, all

transactions who have written elements read
by T have already committed

CSE 444 - Spring 2014 48

Recoverable Schedules

49

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)
Commit

?

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

Commit
Commit

Nonrecoverable Recoverable

Recoverable Schedules

50

T1 T2 T3 T4
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

R(B)
W(B)
R(C)
W(C)

R(C)
W(C)
R(D)
W(D)

Abort

How do we recover ?

Cascading Aborts

•  If a transaction T aborts, then we need to
abort any other transaction T’ that has read
an element written by T

•  A schedule avoids cascading aborts if
whenever a transaction reads an element, the
transaction that has last written it has already
committed.

CSE 444 - Spring 2014 51

Avoiding Cascading Aborts

52

T1 T2
R(A)
W(A)
Commit

R(A)
W(A)
R(B)
W(B)
. . .

Without cascading aborts

T1 T2
R(A)
W(A)

R(A)
W(A)
R(B)
W(B)

. . .
. . .

With cascading aborts

Review of Schedules

Serializability

•  Serial
•  Serializable
•  Conflict serializable
•  View serializable

Recoverability

•  Recoverable
•  Avoids cascading

deletes

CSE 444 - Spring 2014 53

Scheduler

•  The scheduler:
•  Module that schedules the transaction’s

actions, ensuring serializability

•  Two main approaches
•  Pessimistic: locks
•  Optimistic: time stamps, MV, validation

Pessimistic Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If the lock is taken by another transaction,

then wait
•  The transaction must release the lock(s)

CSE 444 - Spring 2014 55

Notation

CSE 444 - Spring 2014 56

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

A Non-Serializable Schedule

CSE 444 - Spring 2014 57

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Example

58

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule

But…

59

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! What’s wrong ?

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (will
prove this shortly)

CSE 444 - Spring 2014 60

Example: 2PL transactions

61

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable

Example with Multiple
Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

CSE 444 - Spring 2014 62

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

Two Phase Locking (2PL)

63

Theorem: 2PL ensures conflict serializability

Two Phase Locking (2PL)

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Two Phase Locking (2PL)

65

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:

Two Phase Locking (2PL)

66

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A) why?

Two Phase Locking (2PL)

67

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B) why?

Two Phase Locking (2PL)

68

Theorem: 2PL ensures conflict serializability

Proof. Suppose not: then
there exists a cycle
in the precedence graph.

T1

T2

T3

B A

C

Then there is the
following temporal
cycle in the schedule:
U1(A)àL2(A)
L2(A)àU2(B)
U2(B)àL3(B)
L3(B)àU3(C)
U3(C)àL1(C)
L1(C)àU1(A) Contradiction

A New Problem:
Non-recoverable Schedule

69

T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);
Commit

Abort

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed;
release happens at the time of COMMIT or
ROLLBACK

•  Schedule is recoverable
•  Schedule avoids cascading aborts
•  Schedule is strict: read book

CSE 444 - Spring 2014 70

Strict 2PL
T1 T2
L1(A); READ(A)
A :=A+100
WRITE(A);

L2(A); DENIED…
L1(B); READ(B)
B :=B+100
WRITE(B);
U1(A),U1(B); Rollback

…GRANTED; READ(A)
A := A*2
WRITE(A);
L2(B); READ(B)
B := B*2
WRITE(B);
U2(A); U2(B); Commit 71

Summary of Strict 2PL

•  Ensures serializability, recoverability, and
avoids cascading aborts

•  Issues: implementation, lock modes,
granularity, deadlocks, performance

CSE 444 - Spring 2014 72

The Locking Scheduler

Task 1: -- act on behalf of the transaction

Add lock/unlock requests to transactions
•  Examine all READ(A) or WRITE(A) actions
•  Add appropriate lock requests
•  On COMMIT/ROLLBACK release all locks
•  Ensures Strict 2PL !

CSE 444 - Spring 2014 73

The Locking Scheduler

Task 2: -- act on behalf of the system
 Execute the locks accordingly

•  Lock table: a big, critical data structure in a DBMS !
•  When a lock is requested, check the lock table

–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction
from its wait list

•  When a transaction aborts, release all its locks
•  Check for deadlocks occasionally

CSE 444 - Spring 2014 74

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

75

None S X
None OK OK OK

S OK OK Conflict
X OK Conflict Conflict

Lock compatibility matrix:

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables, predicate locks)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks) [commercial DBMSs]
–  Lock escalation

CSE 444 - Spring 2014 76

Deadlocks
•  Cycle in the wait-for graph:

–  T1 waits for T2
–  T2 waits for T3
–  T3 waits for T1

•  Deadlock detection
–  Timeouts
–  Wait-for graph

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

CSE 444 - Spring 2014 77

Lock Performance

CSE 444 - Spring 2014 78

Th
ro

ug
hp

ut

Active Transactions

thrashing

Why ?

The Tree Protocol

•  An alternative to 2PL, for tree structures
•  E.g. B-trees (the indexes of choice in

databases)

•  Because
–  Indexes are hot spots!
–  2PL would lead to great lock contention

CSE 444 - Spring 2014 79

The Tree Protocol

Rules:
•  The first lock may be any node of the tree
•  Subsequently, a lock on a node A may only be acquired if the

transaction holds a lock on its parent B
•  Nodes can be unlocked in any order (no 2PL necessary)
•  “Crabbing”

–  First lock parent then lock child
–  Keep parent locked only if may need to update it
–  Release lock on parent if child is not full

•  The tree protocol is NOT 2PL, yet ensures conflict-
serializability !

CSE 444 - Spring 2014 80

Phantom Problem
•  So far we have assumed the database to be a

static collection of elements (=tuples)

•  If tuples are inserted/deleted then the phantom
problem appears

CSE 444 - Spring 2014 81

Phantom Problem

Is this schedule serializable ?

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

83

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

84

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

This is conflict serializable ! What’s wrong ??

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem

85

Suppose there are two blue products, X1, X2:
R1(X1),R1(X2),W2(X3),R1(X1),R1(X2),R1(X3)

Not serializable due to phantoms

T1 T2
SELECT *
FROM Product
WHERE color=‘blue’

INSERT INTO Product(name, color)
VALUES (‘gizmo’,’blue’)

SELECT *
FROM Product
WHERE color=‘blue’

Phantom Problem
•  A “phantom” is a tuple that is

invisible during part of a transaction execution but
not invisible during the entire execution

•  In our example:
–  T1: reads list of products
–  T2: inserts a new product
–  T1: re-reads: a new product appears !

CSE 444 - Spring 2014 86

Phantom Problem

•  In a static database:
–  Conflict serializability implies serializability

•  In a dynamic database, this may fail due to
phantoms

•  Strict 2PL guarantees conflict serializability,
but not serializability

87

Dealing With Phantoms

•  Lock the entire table, or
•  Lock the index entry for ‘blue’

–  If index is available

•  Or use predicate locks
–  A lock on an arbitrary predicate

Dealing with phantoms is expensive !

Isolation Levels in SQL

1.  “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

2.  “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

3.  “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

4.  Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

CSE 444 - Spring 2014 89

ACID

1. Isolation Level: Dirty Reads

•  “Long duration” WRITE locks
–  Strict 2PL

•  No READ locks
–  Read-only transactions are never delayed

CSE 444 - Spring 2014 90

Possible pbs: dirty and inconsistent reads

2. Isolation Level: Read Committed

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Short duration” READ locks
–  Only acquire lock while reading (not 2PL)

CSE 444 - Spring 2014 91

Unrepeatable reads
When reading same element twice,
may get two different values

3. Isolation Level: Repeatable Read

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

CSE 444 - Spring 2014 92

This is not serializable yet !!! Why ?

4. Isolation Level Serializable

•  “Long duration” WRITE locks
–  Strict 2PL

•  “Long duration” READ locks
–  Strict 2PL

•  Deals with phantoms too

CSE 444 - Spring 2014 93

READ-ONLY Transactions

CSE 444 - Spring 2014 94

Client 1: START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE FROM Product
 WHERE price <=0.99
 COMMIT

Client 2: SET TRANSACTION READ ONLY

 START TRANSACTION
 SELECT count(*)
 FROM Product

 SELECT count(*)
 FROM SmallProduct
 COMMIT

May improve
performance

