CSE 444: Database Internals

Lecture 9
Query Plan Cost Estimation

Announcements

- Lab 2 / part 1 due tonight 11 pm
- Homework 2 due Wednesday 11pm
- Quiz section slides are posted

Query Optimization Summary

- Goal: find a physical plan that has minimal cost

Query Optimization Summary

- Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities

Query Optimization Summary

- Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities

Query Optimization Summary

- Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities
$-\mathrm{Eg} . \operatorname{Cost}(\mathrm{V} \bowtie T)=3 B(V)+3 B(T)$
$-B(V)=T(V) /$ PageSize
$-T(V)=T(\sigma(R) \bowtie S)$

Query Optimization Summary

- Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities
$-\mathrm{Eg} . \operatorname{Cost}(\mathrm{V} \bowtie T)=3 B(V)+3 B(T)$
$-B(V)=T(V) /$ PageSize
$-T(V)=T(\sigma(R) \bowtie S)$
Cardinality estimation problem: e.g. estimate $T(\sigma(R) \bowtie S)$

Database Statistics

- Collect statistical summaries of stored data
- Estimate size (=cardinality) in a bottom-up fashion
- This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
- Hand-written formulas, similar to those we used for computing the cost of each physical operator

Database Statistics

- Number of tuples (cardinality) $T(R)$
- Indexes, number of keys in the index $\mathrm{V}(\mathrm{R}, \mathrm{a})$
- Number of physical pages B(R)
- Statistical information on attributes
- Min value, Max value, V(R,a)
- Histograms
- Collection approach: periodic, using sampling

Size Estimation Problem

```
Q = SELECT list
FROM R1, ..., Rn
WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond \({ }_{k}\)
```

Given $T(R 1), T(R 2), \ldots, T(R n)$
Estimate T(Q)
How can we do this? Note: doesn't have to be exact.

Size Estimation Problem

Q = SELECT list FROM R1, ..., Rn WHERE cond ${ }_{1}$ AND cond ${ }_{2}$ AND . . . AND cond ${ }_{k}$

Remark: $T(Q) \leq T(R 1) \times T(R 2) \times \ldots \times T(R n)$

Size Estimation Problem

```
Q = SELECT list FROM R1, ..., Rn WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond \({ }_{k}\)
```

$$
\text { Remark: } T(Q) \leq T(R 1) \times T(R 2) \times \ldots \times T(R n)
$$

Key idea: each condition reduces the size of $T(Q)$ by some factor, called selectivity factor

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

$R(A, B)$	$Q=S E L E C T ~ *$
$S(B, C)$	FROM R, S, T
T(C,D)	WHERE R.B=S.B and $S . C=T . C$ and $R . A<40$

$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$
Selectivity of R.A <40 is $1 / 2$
Q: What is the estimated size of the query output $T(Q)$?

Example

$R(A, B) \quad Q=S E L E C T$ *
$T(R)=30 k, T(S)=200 k, T(T)=10 k$
Selectivity of R.B $=S . B$ is $1 / 3$
Selectivity of S.C $=$ T.C is $1 / 10$
Selectivity of R.A <40 is $1 / 2$
Q: What is the estimated size of the query output $T(Q)$?
$A: T(Q)=30 k * 200 k * 10 k * 1 / 3 * 1 / 10 * 1 / 2=10^{12}$

Selectivity Factors for Conditions

$$
\begin{aligned}
& \text { • } A=c \quad / * \sigma_{A=c}(R)^{* /} \\
& \quad-\text { Selectivity }=1 / V(R, A)
\end{aligned}
$$

Selectivity Factors for Conditions

$$
\begin{aligned}
& \text { - } A=c \quad /^{*} \sigma_{A=c}(R) * / \\
& \quad \text { - Selectivity }=1 / \mathrm{V}(\mathrm{R}, \mathrm{~A})
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } A<c \quad /^{*} \sigma_{A<C}(R)^{*} / \\
& - \text { Selectivity }=(\mathrm{c}-\operatorname{Low}(\mathrm{R}, \mathrm{~A})) /(\operatorname{High}(\mathrm{R}, \mathrm{~A})-\operatorname{Low}(\mathrm{R}, \mathrm{~A}))
\end{aligned}
$$

Selectivity Factors for Conditions

- $A=C$

$$
/ * \sigma_{A=c}(R) * /
$$

- Selectivity $=1 / V(R, A)$
- $\mathrm{A}<\mathrm{C}$
${ }^{*} \sigma_{A<c}(R)^{*} /$
- Selectivity $=(c-\operatorname{Low}(R, A)) /(\operatorname{High}(R, A)-\operatorname{Low}(R, A))$
- $A=B$

$$
/^{*} R \bowtie_{A=B} S * /
$$

- Selectivity $=1 / \max (\mathrm{V}(\mathrm{R}, \mathrm{A}), \mathrm{V}(\mathrm{S}, \mathrm{A}))$
- (will explain next)

Assumptions

- Containment of values: if $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$, then all values R.A occur in S.B
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $V\left(R \bowtie_{A=B} S, C\right)=V(R, C) \quad(o r V(S, C))$
- Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator

Selectivity of $R \bowtie_{A=B} S$

Assume $\mathrm{V}(\mathrm{R}, \mathrm{A})<=\mathrm{V}(\mathrm{S}, \mathrm{B})$

- A tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

$$
T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))
$$

Size Estimation for Join

Example:

- $T(R)=10000, T(S)=20000$
- $V(R, A)=100, V(S, B)=200$
- How large is $R \bowtie_{A=B} S$?
(In class...)

Complete Example

Supplier(sid, sname, scity, sstate) Supply(sid, pno, quantity)

- Some statistics
- T(Supplier) = 1000 records
- T(Supply) = 10,000 records
- B(Supplier) = 100 pages
- B(Supply) = 100 pages
- V(Supplier,scity) = 20, V(Suppliers,state) $=10$
- V(Supply,pno) $=2,500$
- Both relations are clustered
- $\mathrm{M}=11$

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities

Physical Query Plan 1

(On the fly)
π sname \quad Selection and project on-the-fly
-> No additional cost.
(On the fly)
σ scity=‘Seattle’ ^sstate=‘WA' \wedge pno=2
(Nested loop)

Total cost of plan is thus cost of join:
= B(Supplier) $+\mathrm{B}($ Supplier)*B(Supply)
= $100+100$ * 100
$=10,100 \mathrm{I} / \mathrm{Os}$
Supply
(File scan)

Physical Query Plan 2

(On the fly)
π sname
(Sort-merge join)
(Scan write to T1)
(a) $\sigma_{\text {scity='Seattle' } \wedge s s t a t e=' W A ' ~}^{\text {' }}$

Supplier
(File scan)
(d) Total cost

$$
=100+100 * 1 / 20 * 1 / 10(a)
$$

$$
+100+100 * 1 / 2500(b)
$$

$$
+2 \text { (c) }
$$

$$
+0 \text { (d) }
$$

Total cost ≈ 204 I/Os (Scan
(b) $\sigma_{p n o=2} \underset{\text { wite }}{ }$ to T2)

Supply

(File scan)

Plan 2 with Different Numbers

(d)

Total cost

What if we had:
 π sname
 10K pages of Supplier 10K pages of Supply (Sort-merge join)

$=10000+50(\mathrm{a})$
$+10000+4$ (b)
$+3^{*} 50+4$ (c)
+0 (d)
(Scan
write to T1)
(a) $\sigma_{\text {scity='Seattle' } \wedge s s t a t e=' W A ' ~}^{\text {' }}$

Supplier
(File scan)
Total cost $\approx 20,208 \mathrm{I} / \mathrm{Os}$ (Scan
(b) $\sigma_{p n o=2} \underset{\text { wite }}{ }$ to T2)

Need to do a two-
Supply
(File scan)

Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Estimate $=25000 / 50=500$ Estimate $=25000 * 6 / 50=3000$

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\text {age }=48}(\text { Empolyee })=? \quad \sigma_{\text {age }>28 \text { and age }<35}(\text { Empolyee })=?
$$

Age:	0.20	20.29	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Histograms

Employee(ssn, name, age)

$\mathrm{T}($ Employee $)=25000, \mathrm{~V}($ Empolyee, age $)=50$ $\min ($ age $)=19, \max ($ age $)=68$

$$
\sigma_{\mathrm{age}=48}(\text { Empolyee })=? \quad \sigma_{\mathrm{age}>28 \text { and age }<35}(\text { Empolyee })=?
$$

\square	\square	\square				
Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500
Estimate $=1 * 80+5 * 500=2580$						

Types of Histograms

- How should we determine the bucket boundaries in a histogram?

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY?
- Not updated during database update, but recomputed periodically
- WHY?
- Multidimensional histograms rarely used - WHY?

