CSE 444: Database Internals

Lecture 9
Query Plan Cost Estimation
Announcements

• Lab 2 / part 1 due tonight 11pm

• Homework 2 due Wednesday 11pm

• Quiz section slides are posted
Query Optimization Summary

• Goal: find a physical plan that has minimal cost
Query Optimization Summary

• Goal: find a physical plan that has minimal cost

• Cost: we know how to compute it if we know the cardinalities
Query Optimization Summary

- **Goal:** find a physical plan that has minimal cost

- **Cost:** we know how to compute it if we know the cardinalities
Query Optimization Summary

• Goal: find a physical plan that has minimal cost

• Cost: we know how to compute it if we know the cardinalities
 – Eg. \(\text{Cost}(V \bowtie T) = 3B(V) + 3B(T) \)
 – \(B(V) = T(V) / \text{PageSize} \)
 – \(T(V) = T(\sigma(R) \bowtie S) \)
Query Optimization Summary

- **Goal:** find a physical plan that has minimal cost

- **Cost:** we know how to compute it if we know the cardinalities
 - Eg. \(\text{Cost}(V \bowtie T) = 3B(V) + 3B(T) \)
 - \(B(V) = T(V) / \text{PageSize} \)
 - \(T(V) = T(\sigma(R) \bowtie S) \)

Cardinality estimation problem: e.g. estimate \(T(\sigma(R) \bowtie S) \)
Database Statistics

- **Collect** statistical summaries of stored data

- **Estimate size** (=cardinality) in a bottom-up fashion
 - This is the most difficult part, and still inadequate in today’s query optimizers

- **Estimate cost** by using the estimated size
 - Hand-written formulas, similar to those we used for computing the cost of each physical operator
Database Statistics

- Number of tuples (cardinality) $T(R)$
- Indexes, number of keys in the index $V(R,a)$
- Number of physical pages $B(R)$
- Statistical information on attributes
 - Min value, Max value, $V(R,a)$
- Histograms

- Collection approach: periodic, using sampling
Size Estimation Problem

\[Q = \text{SELECT list} \]
\[\text{FROM R1, \ldots, Rn} \]
\[\text{WHERE cond}_1 \text{ AND cond}_2 \text{ AND} \ldots \text{ AND cond}_k \]

Given \(T(R1), T(R2), \ldots, T(Rn) \)
Estimate \(T(Q) \)

How can we do this? Note: doesn’t have to be exact.
Size Estimation Problem

\[Q = \text{SELECT list} \]
\[\text{FROM} \ R1, \ldots, \ Rn \]
\[\text{WHERE} \ \text{cond}_1 \ \text{AND} \ \text{cond}_2 \ \text{AND} \ldots \ \text{AND} \ \text{cond}_k \]

Remark: \(T(Q) \leq T(R1) \times T(R2) \times \ldots \times T(Rn) \)
Size Estimation Problem

Q = SELECT list
 FROM R1, ..., Rn
 WHERE cond₁ AND cond₂ AND ... AND condₖ

Remark: $T(Q) \leq T(R1) \times T(R2) \times ... \times T(Rn)$

Key idea: each condition reduces the size of $T(Q)$ by some factor, called selectivity factor
Selectivity Factor

• Each condition \texttt{cond} reduces the size by some factor called \textit{selectivity factor}

• Assuming independence, \textit{multiply} the selectivity factors
Example

Q = SELECT * FROM R, S, T WHERE R.B=S.B and S.C=T.C and R.A<40

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3
Selectivity of S.C = T.C is 1/10
Selectivity of R.A < 40 is ½

Q: What is the estimated size of the query output T(Q)?
Example

\[Q = \text{SELECT } * \]
\[\text{FROM } R, S, T \]
\[\text{WHERE } R.B = S.B \text{ and } S.C = T.C \text{ and } R.A < 40 \]

\[T(R) = 30k, \ T(S) = 200k, \ T(T) = 10k \]

Selectivity of \(R.B = S.B \) is \(1/3 \)
Selectivity of \(S.C = T.C \) is \(1/10 \)
Selectivity of \(R.A < 40 \) is \(\frac{1}{2} \)

\[Q: \text{What is the estimated size of the query output } T(Q) ? \]

\[A: T(Q) = 30k \times 200k \times 10k \times \frac{1}{3} \times \frac{1}{10} \times \frac{1}{2} = 10^{12} \]
Selectivity Factors for Conditions

- A = c
 \[\sigma_{A=c}(R) \]
 - Selectivity = \(1/V(R,A) \)
Selectivity Factors for Conditions

- **A = c**
 - Selectivity = $1/V(R,A)$

 /* $\sigma_{A=c}(R)$ */

- **A < c**
 - Selectivity = $(c - \text{Low}(R,A))/(\text{High}(R,A) - \text{Low}(R,A))$

 /* $\sigma_{A<c}(R)$ */
Selectivity Factors for Conditions

- **A = c**
 /* \(\sigma_{A=c}(R) \) */
 - Selectivity = \(1/V(R,A) \)

- **A < c**
 /* \(\sigma_{A<c}(R) \) */
 - Selectivity = \((c - \text{Low}(R, A))/(\text{High}(R,A) - \text{Low}(R,A)) \)

- **A = B**
 /* \(R \Join_{A=B} S \) */
 - Selectivity = \(1 / \max(V(R,A), V(S,A)) \)
 - (will explain next)
Assumptions

• **Containment of values**: if $V(R,A) \leq V(S,B)$, then all values $R.A$ occur in $S.B$

 – Note: this indeed holds when A is a foreign key in R, and B is a key in S

• **Preservation of values**: for any other attribute C, $V(R \bowtie_{A=B} S, C) = V(R, C)$ (or $V(S, C)$)

 – Note: we don’t need this to estimate the size of the join, but we need it in estimating the next operator
Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

• A tuple t in R joins with $T(S)/V(S,B)$ tuple(s) in S

• Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

$$T(R \bowtie_{A=B} S) = \frac{T(R) T(S)}{\max(V(R,A), V(S,B))}$$
Size Estimation for Join

Example:

- $T(R) = 10000$, $T(S) = 20000$
- $V(R,A) = 100$, $V(S,B) = 200$
- How large is $R \bowtie_{A=B} S$?

(In class…)
Complete Example

Supplier\((sid, sname, scity, sstate)\)
Supply\((sid, pno, quantity)\)

- **Some statistics**
 - \(T(\text{Supplier}) = 1000\) records
 - \(T(\text{Supply}) = 10,000\) records
 - \(B(\text{Supplier}) = 100\) pages
 - \(B(\text{Supply}) = 100\) pages
 - \(V(\text{Supplier}, \text{scity}) = 20\), \(V(\text{Suppliers}, \text{state}) = 10\)
 - \(V(\text{Supply}, \text{pno}) = 2,500\)
 - Both relations are clustered

- **\(M = 11\)**

```sql
SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
  AND y.pno = 2
  AND x.scity = 'Seattle'
  AND x.sstate = 'WA'
```
Computing the Cost of a Plan

• Estimate **cardinality** in a bottom-up fashion
 – Cardinality is the **size** of a relation (nb of tuples)
 – Compute size of *all* intermediate relations in plan

• Estimate **cost** by using the estimated cardinalities
Physical Query Plan 1

(On the fly) \[\pi_{\text{sname}}\]
Selection and project on-the-fly
-> No additional cost.

(On the fly) \[\sigma_{\text{scity} = 'Seattle' \land \text{sstate} = 'WA' \land \text{pno} = 2}\]

(Nested loop) \[\text{sno} = \text{sno}\]
Total cost of plan is thus cost of join:
= \(B(\text{Supplier}) + B(\text{Supplier}) \times B(\text{Supply})\)
= 100 + 100 \times 100
= 10,100 \text{ I/Os}
Physical Query Plan 2

(On the fly)

\[\pi_{\text{sname}} \]

(Sort-merge join)

\[\sigma_{\text{sno} = \text{sno}} \]

(Scan write to T1)

\[\sigma_{\text{scity} = 'Seattle' \land \text{sstate} = 'WA'} \]

Total cost

\[= 100 + 100 \times \frac{1}{20} \times \frac{1}{10} \quad (a) \]
\[+ 100 + 100 \times \frac{1}{2500} \quad (b) \]
\[+ 2 \quad (c) \]
\[+ 0 \quad (d) \]

Total cost \(\approx 204 \) I/Os

(Scan write to T2)

\[\sigma_{\text{pno} = 2} \]

B(Supplier) = 100
B(Supply) = 100
V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

T(Supplier) = 1000
T(Supply) = 10,000

V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500

\(M = 11 \)
Plan 2 with Different Numbers

What if we had:
10K pages of Supplier
10K pages of Supply

(Sort-merge join)

(Scan
write to T1)

(a) \(\sigma_{\text{scity='Seattle' \land sstate='WA'}} \)

(Scan
write to T2)

(b) \(\sigma_{pno=2} \)

Total cost
= 10000 + 50 (a)
+ 10000 + 4 (b)
+ 3*50 + 4 (c)
+ 0 (d)

Total cost \(\approx \) 20,208 I/Os

Need to do a two-pass sort algorithm
Physical Query Plan 3

(On the fly) (d) \[\pi_{sname} \]

(On the fly)

(On the fly) (c) \[\sigma_{scity='Seattle' \land sstate='WA'} \]

(b) \[sno = sno \]

(Use hash index) 4 tuples

(a) \[\sigma_{pno=2} \]

Supply

(Hash index on pno)

Assume: clustered

Supplier

(Hash index on sno)

Clustering does not matter

Total cost

= 1 (a) + 4 (b) + 0 (c) + 0 (d)

Total cost \approx 5 \text{ I/Os}
Histograms

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)
Employee(ssn, name, age)

$T(\text{Employee}) = 25000, \ V(\text{Employee}, \text{age}) = 50$
$\min(\text{age}) = 19, \ \max(\text{age}) = 68$

$\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \ \text{and} \ \text{age}<35}(\text{Employee}) = ?$
Histograms

Employee(\texttt{ssn}, \texttt{name}, \texttt{age})

\[T(\text{Employee}) = 25000, \quad V(\text{Employee, age}) = 50 \]
\[\min(\text{age}) = 19, \quad \max(\text{age}) = 68 \]

\[\sigma_{\text{age}=48}(\text{Employee}) = ? \quad \sigma_{\text{age}>28 \text{ and } \text{age}<35}(\text{Employee}) = ? \]

Estimate = \(\frac{25000}{50} = 500 \)

Estimate = \(25000 \times \frac{6}{50} = 3000 \)
Histograms

Employee(ssn, name, age)

$T(Employee) = 25000$, $V(Employee, age) = 50$
$\min(age) = 19$, $\max(age) = 68$

$\sigma_{\text{age}=48}(Employee) = \, \, ?$ $\sigma_{\text{age}>28 \text{ and age}<35}(Employee) = \, \, ?$

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

CSE 444 - Spring 2014
Histograms

Employee(ssn, name, age)

$T(\text{Employee}) = 25000$, $V(\text{Employee}, \text{age}) = 50$
$\text{min}(\text{age}) = 19$, $\text{max}(\text{age}) = 68$

$\sigma_{\text{age}=48}(\text{Employee}) =$? $\sigma_{\text{age}>28 \text{ and age}<35}(\text{Employee}) =$?

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Estimate $= 1200$ Estimate $= 1 \times 80 + 5 \times 500 = 2580$
Types of Histograms

• How should we determine the bucket boundaries in a histogram?
Types of Histograms

• How should we determine the bucket boundaries in a histogram?
 • Eq-Width
 • Eq-Depth
 • Compressed
 • V-Optimal histograms
Employee(ssn, name, age)

Histograms

Eq-width:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>200</td>
<td>800</td>
<td>5000</td>
<td>12000</td>
<td>6500</td>
<td>500</td>
</tr>
</tbody>
</table>

Eq-depth:

<table>
<thead>
<tr>
<th>Age:</th>
<th>0..20</th>
<th>20..29</th>
<th>30-39</th>
<th>40-49</th>
<th>50-59</th>
<th>> 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuples</td>
<td>1800</td>
<td>2000</td>
<td>2100</td>
<td>2200</td>
<td>1900</td>
<td>1800</td>
</tr>
</tbody>
</table>

Compressed: store separately highly frequent values: (48,1900)
V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations
Difficult Questions on Histograms

• Small number of buckets
 – Hundreds, or thousands, but not more
 – WHY?

• Not updated during database update, but recomputed periodically
 – WHY?

• Multidimensional histograms rarely used
 – WHY?