CSE 444: Database Internals

Lecture 9 Query Plan Cost Estimation

Announcements

- Lab 2 / part 1 due tonight 11pm
- Homework 2 due Wednesday 11pm
- Quiz section slides are posted

• Goal: find a physical plan that has minimal cost

• Goal: find a physical plan that has minimal cost

 Cost: we know how to compute it if we know the cardinalities

• Goal: find a physical plan that has minimal cost

Cost: we know how to compute it if we know the cardinalities

• Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities
 - Eg. Cost($\lor \lor T$) = 3B(\lor) + 3B(T)
 - $B(\vee) = T(\vee) / PageSize$
 - $T(V) = T(\sigma(R) \bowtie S)$

• Goal: find a physical plan that has minimal cost

- Cost: we know how to compute it if we know the cardinalities
 - Eg. Cost($\lor \forall T$) = 3B(\lor) + 3B(T)

$$- B(\vee) = T(\vee) / PageSize$$

 $- T(\vee) = T(\sigma(R) \bowtie S)$

Cardinality estimation problem: e.g. estimate $T(\sigma(R) \bowtie S)$

Database Statistics

- Collect statistical summaries of stored data
- Estimate <u>size</u> (=cardinality) in a bottom-up fashion
 - This is the most difficult part, and still inadequate in today's query optimizers
- Estimate cost by using the estimated size
 - Hand-written formulas, similar to those we used for computing the cost of each physical operator

Database Statistics

- Number of tuples (cardinality) T(R)
- Indexes, number of keys in the index V(R,a)
- Number of physical pages B(R)
- Statistical information on attributes
 - Min value, Max value, V(R,a)
- Histograms
- Collection approach: periodic, using sampling

Size Estimation Problem

Q = SELECT list FROM R1, ..., Rn WHERE $cond_1 AND cond_2 AND ... AND cond_k$

Given T(R1), T(R2), ..., T(Rn) Estimate T(Q)

How can we do this ? Note: doesn't have to be exact.

Size Estimation Problem

Q = SELECT list FROM R1, ..., Rn WHERE $cond_1 AND cond_2 AND ... AND cond_k$

Remark: $T(Q) \leq T(R1) \times T(R2) \times ... \times T(Rn)$

Size Estimation Problem

Q = SELECT list FROM R1, ..., Rn WHERE $cond_1 AND cond_2 AND ... AND cond_k$

Remark: $T(Q) \leq T(R1) \times T(R2) \times ... \times T(Rn)$

Key idea: each condition reduces the size of T(Q) by some factor, called selectivity factor ₂

Selectivity Factor

- Each condition cond reduces the size by some factor called selectivity factor
- Assuming independence, multiply the selectivity factors

Example

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is $\frac{1}{2}$

Q: What is the estimated size of the query output T(Q)?

Example

T(R) = 30k, T(S) = 200k, T(T) = 10k

Selectivity of R.B = S.B is 1/3Selectivity of S.C = T.C is 1/10Selectivity of R.A < 40 is $\frac{1}{2}$

Q: What is the estimated size of the query output T(Q)?

A: $T(Q) = 30k * 200k * 10k * 1/3 * 1/10 * \frac{1}{2} = 10^{12}$

Selectivity Factors for Conditions

• A = c /* $\sigma_{A=c}(R)$ */

- Selectivity = 1/V(R,A)

Selectivity Factors for Conditions

• A = c /* $\sigma_{A=c}(R)$ */ - Selectivity = 1/V(R,A)

A < c /* σ_{A<c}(R)*/
 – Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))

Selectivity Factors for Conditions

• A = c /* $\sigma_{A=c}(R)$ */ - Selectivity = 1/V(R,A)

- A < c /* $\sigma_{A < c}(R)^*/$ - Selectivity = (c - Low(R, A))/(High(R,A) - Low(R,A))
- A = B /* R ⋈_{A=B} S */
 - Selectivity = $1 / \max(V(R,A),V(S,A))$
 - (will explain next)

Assumptions

- <u>Containment of values</u>: if V(R,A) <= V(S,B), then all values R.A occur in S.B
 - Note: this indeed holds when A is a foreign key in R, and B is a key in S
- <u>Preservation of values</u>: for any other attribute C,
 V(R ⋈_{A=B} S, C) = V(R, C) (or V(S, C))
 - Note: we don't need this to estimate the size of the join, but we need it in estimating the next operator

Selectivity of $R \bowtie_{A=B} S$

Assume $V(R,A) \leq V(S,B)$

- A tuple t in R joins with T(S)/V(S,B) tuple(s) in S
- Hence $T(R \bowtie_{A=B} S) = T(R) T(S) / V(S,B)$

$T(R \bowtie_{A=B} S) = T(R) T(S) / max(V(R,A),V(S,B))$

Size Estimation for Join

Example:

- T(R) = 10000, T(S) = 20000
- V(R,A) = 100, V(S,B) = 200
- How large is $R \bowtie_{A=B} S$?

(In class...)

Complete Example

Supplier(<u>sid</u>, sname, scity, sstate) Supply(<u>sid</u>, <u>pno</u>, quantity)

- Some statistics
 - T(Supplier) = 1000 records
 - T(Supply) = 10,000 records
 - B(Supplier) = 100 pages
 - B(Supply) = 100 pages
 - V(Supplier,scity) = 20, V(Suppliers,state) = 10
 - V(Supply,pno) = 2,500
 - Both relations are clustered
- M = 11

SELECT sname FROM Supplier x, Supply y WHERE x.sid = y.sid and y.pno = 2 and x.scity = 'Seattle' and x.sstate = 'WA'

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
 - Cardinality is the <u>size</u> of a relation (nb of tuples)
 - Compute size of *all* intermediate relations in plan
- Estimate cost by using the estimated cardinalities

T(Supplier) = 1000B(Supplier) = 100V(Supplier, scity) = 20M = 11V(Supplier, state) = 10 T(Supply) = 10,000B(Supply) = 100V(Supply,pno) = 2,500Physical Query Plan 2 Total cost (d) π_{sname} (On the fly) = 100 + 100 * 1/20 * 1/10 (a) + 100 + 100 * 1/2500 (b) +2(c)(C)(Sort-merge join) + 0 (d)sno = snoTotal cost ≈ 204 I/Os (Scan (Scan write to T1) (b) $\hat{\sigma}_{\text{pno=2}}^{\text{write to T2}}$ (a) $\sigma_{\text{scity='Seattle' } \land \text{sstate='WA'}}$ Supplier Supply (File scan) (File scan)

CSE 444 - Spring 2014

Plan 2 with Different Numbers

CSE 444 - Spring 2014

M = 11

- Statistics on data maintained by the RDBMS
- Makes size estimation much more accurate (hence, cost estimations are more accurate)

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

CSE 444 - Spring 2014

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}(Empolyee) = ? \sigma_{age>28 and age<35}(Empolyee) = ?$

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Employee(<u>ssn</u>, name, age)

T(Employee) = 25000, V(Empolyee, age) = 50min(age) = 19, max(age) = 68

 $\sigma_{age=48}$ (Empolyee) = ? $\sigma_{age>28 \text{ and } age<35}$ (Empolyee) = ?

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Estimate = 1200 Estimate = 1*80 + 5*500 = 2580

Types of Histograms

• How should we determine the bucket boundaries in a histogram ?

Types of Histograms

- How should we determine the bucket boundaries in a histogram ?
- Eq-Width
- Eq-Depth
- Compressed
- V-Optimal histograms

Employee(ssn, name, age) Histograms

Eq-width:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	020	2029	30-39	40-49	50-59	> 60
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: (48,1900)

V-Optimal Histograms

- Defines bucket boundaries in an optimal way, to minimize the error over all point queries
- Computed rather expensively, using dynamic programming
- Modern databases systems use V-optimal histograms or some variations

Difficult Questions on Histograms

- Small number of buckets
 - Hundreds, or thousands, but not more
 - WHY ?
- Not updated during database update, but recomputed periodically

 WHY ?
- Multidimensional histograms rarely used – WHY ?