CSE 444: Database Internals

Lecture 8

Operator Algorithms (part 2)

Announcements

- Lab 2 / part 1 due on Friday
- Homework 2 due next Wednesday

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ \# of distinct values of attribute a

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a:
- Unclustered index on a:

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $\mathrm{V}(\mathrm{R}, \mathrm{a})=$ \# of distinct values of attribute a

What is the cost in each case?

- Clustered index on $a: \quad B(R) / V(R, a)$
- Unclustered index on $a: T(R) / V(R, a)$

Index Based Selection

Selection on equality: $\sigma_{a=v}(R)$

- $B(R)=$ size of R in blocks
- $T(R)=$ number of tuples in R
- $V(R, a)=\#$ of distinct values of attribute a

What is the cost in each case?

- Clustered index on a: $\quad B(R) / V(R, a)$
- Unclustered index on $\mathrm{a}: \quad \mathrm{T}(\mathrm{R}) / \mathrm{V}(\mathrm{R}, \mathrm{a})$

Note: we ignore I/O cost for index pages

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=?
$$

- Table scan:
- Index based selection:

Index Based Selection

- Index based selection:

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=?
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered:
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$

$$
\operatorname{cost} \text { of } \sigma_{a=v}(R)=?
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 I / O s$
- If index is unclustered:

Index Based Selection

- Example: $\begin{aligned} & \mathrm{B}(\mathrm{R})=2000 \\ & T(R)=100,000 \\ & \mathrm{~V}(\mathrm{R}, \mathrm{a})=20\end{aligned}$

$$
\text { cost of } \sigma_{a=v}(R)=?
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100 I / O s$
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Index Based Selection

- Example: $\begin{aligned} & B(R)=2000 \\ & T(R)=100,000 \\ & V(R, a)=20\end{aligned}$

$$
\text { cost of } \sigma_{a=v}(R)=?
$$

- Table scan: $B(R)=2,000$ I/Os
- Index based selection:
- If index is clustered: $B(R) / V(R, a)=100$ I/Os
- If index is unclustered: $T(R) / V(R, a)=5,000 \mathrm{I} / \mathrm{Os}$

Index Nested Loop Join

$R \bowtie S$

- Assume S has an index on the join attribute
- Iterate over R, for each tuple fetch corresponding tuple(s) from S
- Cost:
- If index on S is clustered: $B(R)+T(R) B(S) / V(S, a)$
- If index on S is unclustered: $B(R)+T(R) T(S) / V(S, a)$

Outline

- Join operator algorithms
- One-pass algorithms (Sec. 15.2 and 15.3)
- Index-based algorithms (Sec 15.6)
- Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

- What if data does not fit in memory?
- Need to process it in multiple passes
- Two key techniques
- Sorting
- Hashing

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?
$2,4,99,103,88,77,3,79,100,2,50$

Basic Terminology

- A run in a sequence is an increasing subsequence
- What are the runs?

$$
2,4,99,103,|88,|77,|3,79,100,| 2,50
$$

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, sent to disk, repeat

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, sent to disk, repeat

Q: How long are the runs?

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, sent to disk, repeat

Q: How long are the runs?

A: Length $=\mathrm{M}$ blocks

External Merge-Sort: Step 1

Phase one: load M blocks in memory, sort, sent to disk, repeat

Can increase to length 2M using "replacement selection"

External Merge-Sort: Step 2

Phase two: merge M runs into a bigger run

Example

- Merging three runs to produce a longer run:
$0,14,33,88,92,192,322$
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
0

Example

- Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
0 ,?

Example

- Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
1, 6, 9, 12, 33, 52, 88, 320

Output:
0, 1,?

Example

- Merging three runs to produce a longer run:

0, 14, 33, 88, 92, 192, 322
2, 4, 7, 43, 78, 103, 523
$1,6,9,12,33,52,88,320$

Output:
$0,1,2,4,6,7$, ?

External Merge-Sort: Step 2

- Merge $\mathrm{M}-1$ runs into a new run
- Result: runs of length $M(M-1) \approx M^{2}$

If $B<=M^{2}$ then we are done

Cost of External Merge Sort

- Read+write+read $=3 B(R)$
- Assumption: $\mathrm{B}(\mathrm{R})<=\mathrm{M}^{2}$

Discussion

- What does $B(R)<=M^{2}$ mean? How large can R be?

Discussion

- What does $B(R)<=M^{2}$ mean? How large can R be?
- Example:
- Page size $=32 \mathrm{~KB}$
- Memory size 32GB: M = 106-pages

Discussion

- What does $B(R)<=M^{2}$ mean? How large can R be?
- Example:
- Page size = 32KB
- Memory size 32GB: M = 106-pages
- R can be as large as 10^{12}-pages
-32×10^{15} Bytes $=32 \mathrm{~PB}$

Merge-Join

Join $R \bowtie S$
 - How?

Merge-Join

Join $R \bowtie S$

- Step 1a: initial runs for R
- Step 1b: initial runs for S
- Step 2: merge and join

Merge-Join

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have

$$
B\left(R_{i}\right)=B(R) / k, \text { for all } i
$$

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

Partitioned Hash Algorithms

- Partition R it into k buckets:

$$
R_{1}, R_{2}, R_{3}, \ldots, R_{k}
$$

- Assuming $B\left(R_{1}\right)=B\left(R_{2}\right)=\ldots=B\left(R_{k}\right)$, we have $B\left(R_{i}\right)=B(R) / k$, for all i
- Goal: each R_{i} should fit in main memory: $B\left(R_{i}\right) \leq M$

How do we choose k?

Partitioned Hash Algorithms

- We choose $k=M-1$ Each bucket has size approx. $B(R) /(M-1) \approx B(R) / M$

$$
\text { Assumption: } B(R) / M \leq M \text {, i.e. } B(R) \leq M^{2}
$$

Grace-Join

$R \bowtie S$

Note: grace-join is also called

Grace-Join

$R \bowtie S$

- Step 1:
- Hash S into M buckets
- send all buckets to disk
- Step 2
- Hash R into M buckets
- Send all buckets to disk
- Step 3
- Join every pair of buckets

Note: grace-join is also called partitioned hash-join

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Grace-Join

- Partition both relations using hash fn h : R tuples in partition i will only match S tuples in partition i.

Partitions
 of R \& S

Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, search for matches.

Disk

Join Result
Hash table for partition

Disk

Grace Join

- Cost: 3B(R) + 3B(S)
- Assumption: $\min (B(R), B(S))<=M^{2}$

Hybrid Hash Join Algorithm

- Partition S into k buckets t buckets S_{1}, \ldots, S_{t} stay in memory k-t buckets $\mathrm{S}_{\mathrm{t}+1}, \ldots, \mathrm{~S}_{\mathrm{k}}$ to disk
- Partition R into k buckets
- First t buckets join immediately with S
- Rest k-t buckets go to disk
- Finally, join k-t pairs of buckets:
$\left(R_{t+1}, S_{t+1}\right),\left(R_{t+2}, S_{t+2}\right), \ldots,\left(R_{k}, S_{k}\right)$

Hybrid Hash Join Algorithm

Hybrid Join Algorithm

- How to choose k and t?

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
k <= M

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

$$
\underbrace{\text { One block/bucket in memory }}_{\mathrm{k}<=\mathrm{M}}
$$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.

$$
\underbrace{\text { One block/bucket in memory }}_{\mathrm{k}<=\mathrm{M}}
$$

- Choose t/k large but s.t. t / k * $B(S)<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t. t / k * $B(S)<=M$
- Together:
t / k * $B(S)+k-t<=M$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.

- Together:
t / k * $B(S)+k-t<=M$
- Assuming t/k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.

- Together:
t / k * $B(S)+k-t<=M$
- Assuming t/k * $B(S) \gg k-t: \quad t / k=M / B(S)$

$$
\text { Total size of first } t \text { buckets }
$$

Hybrid Join Algorithm

- How to choose k and t?
- Choose k large but s.t.
- Choose t/k large but s.t.

- Together:
t / k * $B(S)+k-t<=M$
- Assuming t/k * $B(S) \gg k-t: \quad t / k=M / B(S)$

Hybrid Join Algorithm

Even better: adjust t dynamically

- Start with $\mathrm{t}=\mathrm{k}$: all buckets are in main memory
- Read blocks from S, insert tuples into buckets
- When out of memory:
- Send one bucket to disk
- t:= t-1
- Worst case:
- All buckets are sent to disk ($\mathrm{t}=0$)
- Hybrid join becomes grace join

Hybrid Join Algorithm

Cost of Hybrid Join:

- Grace join: 3B(R) + 3B(S)
- Hybrid join:
- Saves 2 I/Os for t / k fraction of buckets
- Saves 2t/k(B(R) + B(S)) I/Os
- Cost:

$$
(3-2 t / k)(B(R)+B(S))=(3-2 M / B(S))(B(R)+B(S))
$$

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm ?

Hybrid Join Algorithm

- What is the advantage of the hybrid algorithm ?

It degrades gracefully when S larger than M :

- When $\mathrm{B}(\mathrm{S})<=\mathrm{M}$
- Main memory hash-join has cost $B(R)+B(S)$
- When $B(S)>M$
- Grace-join has cost $3 B(R)+3 B(S)$
- Hybrid join has cost (3-2t/k)(B(R) + B(S))

Summary of External Join Algorithms

- Block Nested Loop: B(S) + B(R)*B(S)/M
- Index Join: $B(R)+T(R) B(S) / V(S, a)$
- Partitioned Hash: 3B(R)+3B(S);
$-\min (B(R), B(S))<=M^{2}$
- Merge Join: 3B(R)+3B(S)
$-B(R)+B(S)<=M^{2}$

Summary of Query Execution

- For each logical query plan
- There exist many physical query plans
- Each plan has a different cost
- Cost depends on the data
- Additionally, for each query
- There exist several logical plans
- Next lecture: query optimization
- How to compute the cost of a complete plan?
- How to pick a good query plan for a query?

