CSE 444: Database Internals

Lecture 1 Introduction

Course Staff

• Instructor: Dan Suciu

- <u>suciu@cs.washington.edu</u> OH: Mondays 1:30-2:20

• TA: Jingjing Wang

- jingjing@cs.washington.edu OH: TBA

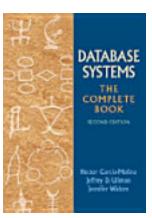
- TA: Priya Rao Chagaleti
 - priyarao@cs.washington.edu OH: TBA
- TA: Aloka Krishnan
 - <u>alokak@cs.washington.edu</u> OH: TBA

- The world is drowning in data!
- Need computer scientists to help manage this data
 - Help domain scientists achieve new discoveries
 - Help companies provide better services (e.g. Facebook)
 - Help governments become more efficient
- This class: principles of building data mgmt systems
 - Learn how classical DBMSs are built
 - Learn key principles and techniques
 - Get hands-on experience building a (parallel) DBMS

Course Format

- Lectures MWF, 12:30pm-1:20pm
- Sections: Th 9:30-10:20, 10:30-11:20
- Homeworks
 - 6 Labs + 6 Homeworks
- NO exams

Communication (part 1)


- Web page: http://www.cs.washington.edu/444
 - Lectures/Sections will be available there
 - Homeworks/Labs will be available there
- Mailing list
 - Announcements, group discussions
 - You are already subscribed

Communication (part 2)

Message Board:

- Ask questions about the course, labs, homeworks
- Do not to post any fragment of your code
- Do not send questions by email unless
 - You need to discuss a personal matter
 - You want to setup an appointment
 - A question has not been answered on the board

Textbook

Main textbook, available at the bookstore:

 Database Systems: The Complete Book, Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom

Second edition.

See course website for recommended chapters

Other Readings

- See Website
- Other highly recommended book:
 - Database Management Systems, Ramakrishnan & Gerhke
 - Use this book if you do not like the Ullman book
- There is a section on reading assignments for 544M only

Grading

• Lab 1, 2, 3, 5: 40% (10% each)

• Final Lab 4 or Lab 6 (your choice): 15%

• Final project report 10%

• Six written assignments: 35%

Six Labs

- Lab 1: Build a DBMS that can scan a relation on disk
 Part 1 of this lab is due on Friday!
- Lab 2: Build a DBMS that can run simple SQL queries and also supports data updates
- Lab 3: Add a lock manager (transactions)
- Lab 5: Add a write-ahead log (transactions)
- Lab 4: Add a query optimizer
- Lab 6: Make your DBMS parallel

Warning: I will run cheating-detecting software!

About the Labs

Logistics:

- To be done INDIVIDUALLY!
- Each lab will take a **significant** amount of time
- Labs build on each other

Purpose

- Hands-on experience building a DBMS
- Deepen your understanding significantly
- We will build a *classical* DBMS
- In class we will discuss some *new-types* of DBMSs

Six Homeworks

- Written assignments
- Help review material learned in class
- Prepare you for the labs
 - One homework before each corresponding lab
- Go beyond what we implement in labs
- To be done **INDIVIDUALLY**

No exams

Outline (this lecture and next)

Review of DBMS goals and features

Review of relational model

Review of SQL

Review: DBMS

• What is a database? Give examples

 What is a database management system? Give examples

Review: DBMS

- What is a database? Give examples
 - A collection of related files
 - E.g. payroll, accounting, products
- What is a database management system? Give examples
 - A big C program written by someone else that manages the database; postgres, …
 - In 444 you are that "someone else", implementing SimpleDB

Review: Data Model

• What is a data model?

• What is the relational data model?

Review: Data Model

• What is a data model?

A mathematical formalism for data

- What is the relational data model?
 - Data is stored in tables (aka relations)
 - Data is queried via relational queries
 - Queries are set-at-a-time

Review: Transactions

• What is a transaction?

What properties do transactions have?

Review: Transactions

- What is a transaction?
 - A set of instructions that must be executed all or nothing
- What properties do transactions have?
 ACID
 - Better: Serialization, recovery

Review: Data Independence

The application should not be affected by changes of the physical storage of data

- Indexes
- Physical organization on disk
- Physical plans for accessing the data
- Parallelism: multicore, distributed

Some Key Data Management Concepts

- Data models: Relational, XML, graph data (RDF)
- Schema v.s. Data
- Declarative query languages
 - Say what you want not how to get it
- Data independence
 - Physical: Can change how data is stored on disk without maintenance to applications
- Query compiler and optimizer
- Transactions: isolation and atomicity

Course Content

Focus: how to build a classical relational DBMS

- Review of the relational model (lecture 1 and 2)
- DBMS architecture and deployments (lecture 3)
- Data storage, indexing, and buffer mgmt (lectures 4-6)
- Query evaluation (lectures 7-9)
- Query optimization (lectures 10-13)
- Transactions (lectures 14-19)
- Parallel query processing (lectures 20-22)
- Replication and distribution (lectures 23-25)
- Database as a service and NoSQL (lectures 26 and 27)

Relational Model...

- Let's start our review of the relational model...
- We will continue next lecture