CSE 444 Section 1



Outline

* 1. SimpleDB Overview



What Is SimpleDB

* A “imple” database system
* Ithas
— SQL Front-end
— Basic Operators (Scan, Filter, Join, Aggregate]
— Buffer Pool
— Heap Files
— Transactions
— Simple parallelism
— Simple recovery
— Simple query optimizer
* Itdoesn’t have
— Fancy relational operators (Union, etc)
— Subquery
— Indices



Module Diagram

Parser User Interface
Dblterator
T Optimizer
Filter Aggregate Execution Layer
Catalog |
Join SeqScan
Page BufferPool
HeapPage

DbFile HeapFile Storage Layer

_______________________




- Lab 1:

- Lab 2:

- Lab 3:

- Lab 5:

- Lab 4:

- Lab 6:

Labs

Heap files + bufferpool
operators + updates
transactions concurrency
transactions recovery
guery optimizer

simple parallelism



Database

* Asingle database

* Asingle tablespace
e Distinct table names

e Stores references to:

* A global single instance of Catalog
* A global single instance of BufferPool



Catalog

* Manages meta information of the tables in the
current database

— void addTable(DbFile d, TupleDesc d]
— DbFile getTable(int tableid)

— TupleDesc getTupleDesc(int tableid)]
— getPrimaryKey(tableid)

* Not persistent, needs to be reconstructed every time
SimpleDB starts



BufferPool

* The ONLY bridge between operators and the
data files on disk

 NEVER directly access data files



HeapFile

A file format

Organizes the physical storage of tables
* One heap file for each table

An array of HeapPages

Heap pages have the same fixed size:
BufferPool.PAGE_SIZE

* To efficiently locate any page

HeapPage #1

HeapPage #2

HeapPage #3




HeapPage

 Header is a bitmap
* Indicates empty slots
* Number of bits in Header = number of Tuples

* Following is an array of fixed-length Tuples

* Full page size = BufferPool.PAGE_SIZE
* Fixed, Do not change!

Header (a bitmap)

Tuple #1

Tuple #2




Dblterator

* An interface that all the operators need to
implement

— open(]

— close()

— hasNext()

— next()|

— getTupleDesc()



HeapFileEncoder

HeapFile has its own format
Converts CSV files to HeapFiles

Produces a Heap File csv-file.dat, that can be
passed to the HeapFile constructor

Usage:

— java -jar dist/simpledb.jar convert csv-file.txt
numFields fieldTypes fieldSeparator



Data Types

* |Integer
— Type.INT_TYPE
— 4 bytes long

* Fixed-length String
— Type.STRING_TYPE
— 128 bytes long = Type.STRING_LEN

— Do not change this constant



// construct a 3-column table schema
Type types[] = new Type[]{ Type.INT TYPE, Type.INT TYPE, Type.INT TYPE };
String names[] = new String[]{ "fieldO", "fieldl", "field2" };

TupleDesc descriptor = new TupleDesc(types, names);

// create the table, associate it with some data file.dat
// and tell the catalog about the schema of this table.
HeapFile tablel = new HeapFile(new File("some data file.dat"), descriptor);

Database.getCatalog() .addTable (tablel) ;

// construct the query: we use a simple SegScan, which spoonfeeds
// tuples via its iterator.
TransactionId tid = new TransactionId();

SegScan f = new SeqgScan(tid, tablel.id()):

// and run it
f.open();
while (f.hasNext()) {
Tuple tup = f.next();
System.out.println (tup) ;
}
f.close();

Database.getBufferPool () .transactionComplete () ;



Javadoc

* Javadoc is your friend
* Always follow the guidance of the Javadoc



Outline

e 2. Use Eclipse



Use Eclipse

build.xml
ant eclipse

— .classpath

— .project

Open Eclipse

File -> Import -> Existing Projects into
Workspace -> select the directory -> done



Outline

1. SimpleDB Overview
2. Setup in Eclipse

3. JUnit

4. Grading

5. Tips



JUunit

If you are lazy
e ant test
e ant systemtest
If the bottom of the output likes:
BUILD FAILED
The following error occurred while executing this line:
Test simpledb.systemtest.ScanTest failed
Something goes wrong in the failed test case
If the bottom of the output likes :
BUILD SUCCESSFUL

Congratulations! With very high probability, your
implementation should be correct.



JUunit

* A unit testing framework for java
* Help you organize test cases

e Use java annotations to control
e @Test, the method is a test case
« @Before, this method should run before each @Test
e @After

@BeforeClass, this method should run once, before
all the @Test methods in the class

@AfterClass

e Use assert to check conditions
* Any condition fails, test will fail



Outline

* 4. Grading



Grading

* Test cases
e test/systemtest

e Some extra test cases that we do not release

* Each test case:
* Run multiple times if concurrency is involved
 All-or-nothing / average?

 Write up
* Explain why you implement in that way

 We will read you code
e Passing all test cases doesn’t equal to a high score



Outline

1. SimpleDB Overview
2. Setup in Eclipse

3. JUnit

4. Grading

5. Tips



Don’t

 Modifications of the given class names
 Removal, rename, relocate to other packages
* Modifications of the given method names

 Removal, rename, change parameters, change return
types

* Using any other third-party libraries except provided
ones

e JUnit, for unit test

* JLine, for command line operations
Zql, for parsing SQL

JZlib, for data compression

* Mina-core, for parallelism

Mina-filter-compression, for parallelism
SIf4j-api, for parallelism



Feel Free to

* Adding new classes / interfaces / methods

* But, if the class/interface names happen to
conflict with names we will provide in later labs,
please kindly rename them

e Safer choice: Inner classes

* Adding new packages.
* Very safe. Do it if you like



And you are encouraged to

* Find bugs

* SimpleDB is still under developing, help us
improve it!

e Candy bars
* Alot of them were sent out last year
* Re-implement the given methods
* Gosh! How can the implementations be so ugly!

* Welcome to come up with better
implementations

* Be aware of your time management
* (you will not get bonus point)



Questions



