
CSE 444: Database Internals 

Section 8:  

Parallel Processing 



Review in this section 

1. Parallel DBMS + MapReduce 

2. 2- Phase Commit (2PC) 

3. Demo for parallel SimpleDB (by Jingjing) 

 

 

 

 



1a. Parallel DBMS 
R(a,b) is horizontally partitioned across N = 3 machines. 
 
Each machine locally stores approximately 1/N of the tuples in R.  
 
The tuples are randomly organized across machines (i.e., R is block 

partitioned across machines). 
 
Show a RA plan for this query and how it will be executed across the N = 3 

machines.  
Pick  an efficient plan that leverages the parallelism as much as possible.  
 
• SELECT a, max(b) as topb 
• FROM R 
• WHERE a > 0 
• GROUP BY a 
 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

If more than one relation on a machine, then “scan S”, “scan R” etc 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

a>0 a>0 a>0 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY  a 

R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)-> b a, max(b)-> b a, max(b)-> b 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)-> b a, max(b)-> b a, max(b)-> b 

Hash on a Hash on a Hash on a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb FROM R 
WHERE a > 0  GROUP BY a R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)-> b a, max(b)-> b a, max(b)-> b 

Hash on a Hash on a Hash on a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb FROM R 
WHERE a > 0  GROUP BY a R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)-> b a, max(b)-> b a, max(b)-> b 

Hash on a Hash on a Hash on a 

a, max(b)->topb a, max(b)->topb a, max(b)->topb 



1b. Map Reduce 
Explain how the query will be executed in 

MapReduce 

 

• SELECT a, max(b) as topb 

• FROM R 

• WHERE a > 0 

• GROUP BY a 

 

Specify the computation performed in the map and 
the reduce functions 



Map 

• Each map task 

– Scans a block of R 

– Calls the map function for each tuple 

– The map function applies the selection predicate to the 
tuple 

– For each tuple satisfying the selection, it outputs a record 
with key = a and value = b 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

•When each map task scans multiple relations, it needs to output something like  
key = a and value = (‘R’, b)  
which has the relation name ‘R’ 



Shuffle 

• The MapReduce engine reshuffles the output of the 
map phase and groups it on the intermediate key, i.e. 
the attribute a 

SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

•Note that the programmer has to write only the map and reduce functions, the 
shuffle phase is done by the MapReduce engine (although the programmer can 
rewrite the partition function), but you should still mention this in HW6 answers. 



Reduce 
SELECT a, max(b) as topb    
FROM R 
WHERE a > 0 
GROUP BY a 

• Each reduce task 
• computes the aggregate value max(b) = topb for each 

group (i.e. a) assigned to it (by calling the reduce function)  

• outputs the final results: (a,  topb)     

 

• Multiple aggregates can be output by the reduce phase like 
key = a and value = (sum(b), min(b)) etc. 
 
• Sometimes a second (third etc) level of Map-Reduce phase might be needed 

A local combiner can be used to compute local max before 
data gets reshuffled (in the map tasks) 



1c. Benefit of hash-partitioning 

• What would change if we hash-partitioned R 
on R.a before executing this query 

– For parallel DBMS 

– For MapReduce 

SELECT a, max(b) as topb    
FROM R 

WHERE a > 0 
GROUP BY a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb FROM R 
WHERE a > 0  GROUP BY a Hash-partition on a for R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)-> b a, max(b)-> b a, max(b)-> b 

Hash on a Hash on a Hash on a 

a, max(b)->topb a, max(b)->topb a, max(b)->topb 



1c. Benefit of hash-partitioning 

• For parallel DBMS 

– It would avoid the data re-shuffling phase 

– It would compute the aggregates locally 

SELECT a, max(b) as topb    
FROM R 

WHERE a > 0 
GROUP BY a 



1/3 of R 1/3 of R 1/3 of R 

Machine 1 Machine 2 Machine 3 

SELECT a, max(b) as topb FROM R 
WHERE a > 0  GROUP BY a Hash-partition on a for R(a, b) 

scan scan scan 

a>0 a>0 a>0 

a, max(b)->topb a, max(b)->topb a, max(b)->topb 



1c. Benefit of hash-partitioning 

• For MapReduce 
– Logically, MR won’t know that the data is hash-

partitioned 
– MR treats map and reduce functions as black-boxes 

and does not perform any optimizations on them 
 

• But, if a local combiner is used 
– Saves communication cost:  

• fewer tuples will be emitted by the map tasks 

– Saves computation cost in the reducers:  
• the reducers would have to do anything 

SELECT a, max(b) as topb    
FROM R 

WHERE a > 0 
GROUP BY a 



2. 2PC 

• In the 2PC protocol, what happens if 
– a coordinator sends PREPARE messages 

– all  but one subordinate vote to commit the 
transaction 

– the last subordinate also wants to commit, but it 
crashes before receiving the PREPARE message 
from the coordinator 

• Review? 
– Reading Ramakrishnan-Gehrke book and/or the IBM paper 

might be useful (only 2-3 pages)  

 



Magda Balazinska - CSE 444, Spring 2013 21 

Review: Two-Phase Commit Protocol 

• One coordinator and many subordinates 
– Phase 1: prepare 

– Phase 2: commit or abort 

– Log records for 2PC include transaction and coordinator ids 

– Coordinator also logs ids of all subordinates 

 

• Principle 
– When a process makes a decision: vote yes/no or commit/abort 

– Or when a subordinate wants to respond to a message: ack 

– First force-write a log record (to make sure it survives a failure) 

– Only then send message about decision 



Magda Balazinska - CSE 444, Spring 2013 22 

Review: 2PC: Phase 1, Prepare 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 

to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 

3) Force-write: prepare 

3) Force-write: prepare 

3) Force-write: prepare 

4) YES 

4) YES 
4) YES 

Coordinator/subordinate for 
a specific transaction 

NO vote  
is like a 
veto 



23 

Review: 2PC: Phase 2, Commit 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) Force-write: 

commit 

2) COMMIT 

2) COMMIT 

2) COMMIT 

3) Force-write: commit 

3) Force-write: commit 

3) Force-write: commit 

4) ACK 

4) ACK 
4) ACK 

Transaction is 

now committed! 5) Commit transaction 

and “forget” it 

5) Commit transaction 

and “forget” it 

5) Commit transaction and “forget” it 

6) Write: end, then forget transaction 

Magda Balazinska - CSE 444, Spring 2013 



24 

Review: 2PC with Abort 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) User decides 

to commit 

2) PREPARE 

2) PREPARE 

2) PREPARE 

3) Force-write: prepare 

3) Force-write: abort 

3) Force-write: abort 

4) YES 

4) No 
4) NO 

5) Abort transaction 

and “forget” it 

5) Abort transaction and “forget” it 

Magda Balazinska - CSE 444, Spring 2013 



Magda Balazinska - CSE 444, Spring 2013 25 

Review: 2PC with Abort 

Coordinator 
Subordinate 1 

Subordinate 2 

Subordinate 3 

1) Force-write: 

abort 

2) ABORT 

3) Force-write: abort 

4) ACK 

6) Write: end, then forget transaction 

5) Abort transaction 

and “forget” it 



2. 2PC - Solution 

a coordinator sends PREPARE messages, all  but one subordinate vote to 
commit, the last subordinate crashes before receiving the PREPARE msg 

 

 

• Coordinator 

– Time-out waiting for the reply from the failed 
subordinate 

– Will decide to abort the transaction 

– Write an abort log record 

– Will send a ABORT message to the subordinates 
 

 

 



2. 2PC - Solution 

a coordinator sends PREPARE messages, all  but one subordinate vote to 
commit, the last subordinate crashes before receiving the PREPARE msg 

 

 

• The subordinates that did not crash 

– Will receive the ABORT from the coordinator 

– Write an abort log record 

– Will abort the transaction and “forget” it 
 

 



2. 2PC - Solution 

a coordinator sends PREPARE messages, all  but one subordinate vote to 
commit, the last subordinate crashes before receiving the PREPARE msg 

 

 

• The subordinate that crashed 
– After recovery will find that a transaction was 

executing at the time of the crash, but no commit log 
been written 

– The recovery process will abort the transaction 

– Write an abort log record 

– Will abort the transaction and “forget” it 
 

 


