
CSE 444: Database Internals

Section 5:

Transactions

Review in this section

• Serializability and conflict Serializability

– Precedence graph

• Two-Phase Locking

– Strict two phase locking

• Concurrency control by timestamp

Problem 1: Serializability and Locking

• Is this schedule conflict serializable?

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

What is
• Serializability
• Conflict Serializability?

Review: (Conflict) Serializable Schedule

• A schedule is serializable if it is equivalent to a serial schedule

• A schedule is conflict serializable if it can be transformed into
a serial schedule by a series of swappings of adjacent non-
conflicting actions

Magda Balazinska - CSE 444, Spring 2013 4

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Problem 1: Serializability and Locking

• Is this schedule conflict serializable?

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

• No.

• The precedence graph contains a cycle

T0 T1

W0(A), R1(A)

R1(B), W0(B)

•Why does precedence
graph test work?

•Proof by induction
(sec 18.2.3)

• Show how 2PL can ensure a conflict-
serializable schedule

Original schedule below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

What is
• Two Phase Locking
• Strict Two Phase Locking?

Review:
(Strict) Two Phase Locking (2PL)

The 2PL rule:
In every transaction, all lock requests must preceed

all unlock requests

Strict 2PL:
All locks held by a transaction are released when

the transaction is completed
– Ensures that schedules are recoverable

• Transactions commit only after all transactions whose
changes they read also commit

– Avoids cascading rollbacks

Magda Balazinska - CSE 444, Spring 2013 8

•Ensures conflict serializability

•Proof by induction
(sec 18.3.4)

• Show how 2PL can ensure a conflict-
serializable schedule

Original schedule below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

T0 T1

L0(A)

R0(A)

W0(A)

L1(A) : Block

L0(B)

R0(B)

W0(B)

U0(A)

U0(B)

C0

L1(A) : Granted

R1(A)

L1(B)

R1(B)

U1(A)

U1(B)

C1

Is this strict 2PL?

No, replace C0
by abort

-- Release locks
after commit

• Show how the use of locks without 2PL can
lead to a schedule that is NOT conflict-
serializable

Original schedule below

T0 T1

R0(A)

W0(A)

R1(A)

R1(B)

C1

R0(B)

W0(B)

C0

T0 T1

L0(A)

R0(A)

W0(A)

U0(A)

L1(A)

R1(A)

U1(A)

L1(B)

R1(B)

U1(B)

C1

L0(B)

R0(B)

W0(B)

U0(B)

C0

Problem 2: Timestamp-based
Concurrency Control

• Explain what happens when a time-stamp based
concurrency control is used.

• ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) ->
W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 -> R2(Z)

• Remember!
– You need to mention any changes of RT, WT, Aand C bit of

each element

– Four rules in section 18.8.4

– Four Possible actions: request is accepted, ignored,
delayed, rolledback/aborted

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X)

C = 1 means C = true
C = 0 means C = false

(no space!)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X)

1. Physically realizable:
TS(T1) >= WT(X)

2. C = 1: grant request

3. Update RT : TS(T1) > RT(X)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X)

1. Physically realizable:
TS(T2) >= WT(X)

2. C = 1: grant request

3. Update RT : TS(T2) > RT(X)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C = 0

W1(X)

1. Physically realizable:
TS(T2) >= RT(X) and TS(T2) >= WT(X)

2. Update WT and C (not committed yet)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y)

1. NOT Physically realizable:
TS(T1) < RT(X)

Abort/rollback

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y)

1. Physically realizable:
TS(T3) >= RT(X) and TS(T3) >= WT(X)

2. Update WT and C (not committed yet)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) -> C4 ->
R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3

1. Physically realizable:
TS(T3) >= RT(X) although TS(T2) < WT(X)

2. We could not apply Thomas’ write rule (ignore W2(Y)) since C=0

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) ->

C4 -> R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3 C=1

What else?

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) ->

C4 -> R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT =
0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3 C=1

Ignore W2(Y)
and proceed

W4(Z)

A later write by T3 has
been committed

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) ->

C4 -> R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT =
0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3 C=1

Ignore W2(Y)
and proceed

W4(Z) WT=4, C = 0

C4

1. Physically realizable:
TS(T4) >= RT(X) and TS(T4) >= WT(X)

2. Update WT and C (not committed yet)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) ->

C4 ->R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT =
0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3 C=1

Ignore W2(Y)
and proceed

W4(Z) WT=4, C = 0

C4 C=1

R2(Z)

ST1 -> ST2 -> ST3 -> ST4 -> R1(X) -> R2(X) -> W2(X) -> W1(X) -> W3(Y) -> W2(Y) -> C3 -> W4(Z) ->

C4 ->R2(Z)

 T1 T2 T3 T4 X Y Z

1 2 3 4 RT = 0, WT
= 0, C = 1

RT = 0, WT
= 0, C = 1

RT = 0, WT =
0, C = 1

R1(X) RT=1

R2(X) RT=2

W2(X) WT=2, C=0

W1(X): abort

W3(Y) WT=3, C=0

W2(Y): delay

C3 C=1

Ignore W2(Y)
and proceed

W4(Z) WT=4, C = 0

C4 C=1

R2(Z): abort

1. NOT Physically
realizable:
TS(T2) < WT(Z)

Abort/rollback

Four Rules

• Rule 1: Read request on X by T
– TS(T) < WT(X), abort, not physically realizable (read too late)
– TS(T) >= WT(X), physically realizable

• If C = 1, accept, update RT(X) if necessary
• If C = 0, delay T

Note:
• If a request is not physically realizable, we abort

– for read request, check WT
– for write request, check RT

• If it is physically realizable
– we accept, delay, or (only for write request) ignore

Four Rules

• Rule 2: Write request on X by T

– TS(T) < RT(X), not physically realizable (write too late)

• abort

– TS(T) >= RT(X), physically realizable

• TS(T) >= WT(X)
– accept, update WT(X), set C = 0

• TS(T) < WT(X)
– If C = 1, ignore

– If C = 0, delay

Four Rules

• Rule 3: Commit request by T

– Set C = 1 for all X written by T

– Allow waiting transactions to proceed

• Rule 4: Abort T

– Check if the waiting transactions can proceed now.

You should try to understand the rules before
applying them to solve problems

More Timestamp-based
Concurrency Control

What will happen at the last request?

• ST1 -> ST2 -> R1(A) -> R2(A) -> W1(B) -> W2(B)

• ST1 -> ST2 -> R2(A) -> C2 -> R1(A) -> W1(A)

• ST1 -> ST2 -> ST3-> R1(A) -> W3(A) -> C3 -> W2(A)

• ST1 -> ST2 -> ST3-> R1(A) -> W1(A) -> R2(A)

More Timestamp-based
Concurrency Control

What will happen at the last request?

• ST1 -> ST2 -> R1(A) -> R2(A) -> W1(B) -> W2(B)

– ACCEPTED [no need to check C(B)]

• ST1 -> ST2 -> R2(A) -> C2 -> R1(A) -> W1(A)

– ROLLED BACK [R2(A) precedes]

• ST1 -> ST2 -> ST3-> R1(A) -> W3(A) -> C3 -> W2(A)

– IGNORED [W3(A) committed]

• ST1 -> ST2 -> ST3-> R1(A) -> W1(A) -> R2(A)

– DELAYED [W1(A) not committed yet]

