
CSE 444: Database Internals

Section 3:

Indexing and Operator Algorithms

Problem 1:
B+ tree insertion and deletion

• On board

• (We will do it after problem 2)

Notations

• B(R)

• T(R)

• V(R, a)

• M

Problem 2
Algorithms for Group By and

Aggregate Operators

For homework 2:
 Understand what is going on, do not blindly apply formula!
 Try to choose outer relation carefully to reduce cost/fit data
 in memory

• Modified Tweet Example:
Tweet(tid, uid, tlen) tlen = tweet length

SELECT uid, MIN(tlen)
FROM Tweet
GROUP BY uid

Problem 2a:
One pass, hash-based grouping

5

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing

tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

M = 3

Problem 2a:
One pass, hash-based grouping

6

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing

tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

Main memory data structure

(holds minimum for every

group)

5, 1, 7 4, 2, 10

H = uid % 2

1, 7

2, 10

Could use other main-memory data
structures as well

M = 3

One pass, hash-based grouping

7

5, 1, 7 4, 2, 10

Tweet

1, 3, 3 3,1, 5

Showing

tid, uid, tlen

7, 3, 8 2, 2,5

6, 3, 9 8,1, 10

Disk

1, 3, 3 3,1, 5

H = uid % 2

1, 5 3, 3

2, 10

Minimum

updated

from 7 to 5

M = 3

Discussion: Problem 2a
Cost:

• Clustered?

• B(R): assuming M – 1 pages can hold all groups – tuples for groups can be
shorter or larger than original tuples

• Unclustered?

• Also B(R)

Which method does the grouping:

 open(), next(), or close()?

• Cannot return anything until the entire data is read. Open() needs to do
grouping

What to do for AVG(tlen)?

• Keep both SUM(tlen) and COUNT(*) for each group in memory

One pass, hash-based grouping

9

Tweet

Showing

tid, uid, tlen

Memory M = 21 pages

Main memory data structure

(holds minimum for every

group)

5, 1, 7 4, 2, 10

H = uid % 2

1, 7

2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 8 2, 2,5

6, 3, 9 8, 1, 10

Data has been changed

One pass, hash-based grouping

10

Tweet

Showing

uid, tlen

Memory M = 21 pages

Main memory data structure

(holds minimum for every

group)

1, 3, 3 3, 5, 5

H = uid % 2

1, 7 3, 3

2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 8 2, 2,5

6, 3, 9 8, 1, 10

Three keys map to the same bucket,
need to flush

• Solution?

 Two pass Hash-based Aggregate algorithms

• First Hash all tuples, then perform the
aggregate in second pass

Problem 2b:
Two pass, hash-based grouping

12

Tweet

Showing

Tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

Hint: Two-pass hash-based join in
yesterday’s lecture!

Problem 2b:
Two pass, hash-based grouping

13

Tweet

Showing

Tid, uid, tlen

5, 1, 7 4, 2, 10

H = uid % 2

5, 1, 7

2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

No Aggregation is performed in the first pass

Two pass, hash-based grouping

14

Tweet

Showing

tid, uid, tlen

1, 3, 3 3, 5, 5

H = uid % 2

5, 1, 7 1, 3, 3

4, 2, 10

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

No Aggregation is performed in the first pass

Flush!

Two pass, hash-based grouping

15

Tweet

Showing

tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

Final buffer and disk after pass1

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 10 4, 2, 10 2, 2, 5

Two pass, hash-based grouping

16

Tweet

Showing

tid, uid, tlen

5, 1, 7 1, 3, 3

1, 7 3, 3

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 10 4, 2, 10 2, 2, 5

Two pass, hash-based grouping

17

Tweet

Showing

tid, uid, tlen

3, 5, 5 7, 3, 1

1, 7 3, 3

5, 5

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

Second pass: compute aggregate in each bucket
Need to keep only one record per group

5, 1, 7 1, 3, 3 3, 5, 5 7, 3, 1

6, 4, 9 8, 4, 10 4, 2, 10 2, 2, 5

Update min

Discussion: Problem 2b

Cost?

• 3B(R)

Assumptions?
– Need to hold all distinct values in the same bucket in M-1

– Assuming uniformity, B(R) <= M2 is safe to assume

– But note that can handle much bigger relations R if the
groups are large and #groups is small.

Problem 2c:
Two pass, sort-merge-based grouping

19

Tweet

Showing

tid, uid, tlen

M = 3

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

6, 4, 9 8, 4, 10

Hint: Two-pass sort-merged join in
yesterday’s lecture!

Two pass, sort-based grouping

20

Tweet

Showing

Tid, uid, tlen M = 3

5, 1, 7 4, 2, 10

2, 2,5

7, 3, 1

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

1, 3, 3

3,5, 5

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

Two pass, sort-merged-based grouping

21

Tweet

Showing

uid, tlen M = 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 1: Divide R into M partitions
sort each partition in memory
(on group by attr = uid)
Write to disk

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

Two pass, sort-merged-based grouping

22

Tweet

Showing

uid, tlen

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2:
• Load first blocks from all runs
•Find minimum of each key by “Combine” approach in
merge-sort
•Repeatedly find the lest value of the sort key: next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

Not showing the outputs in output buffer

(uid, min(tlen))
(1, 7)

Two pass, sort-merged-based grouping

23

Tweet

Showing

uid, tlen M = 3

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merged-based grouping

24

Tweet

Showing

uid, tlen M = 3

5, 1, 7 4, 2, 10

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merged-based grouping

25

Tweet

Showing

uid, tlen M = 3

2, 2,5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)

Not showing the outputs in output buffer

Two pass, sort-merged-based grouping

26

Tweet

Showing

uid, tlen M = 3

2, 2,5 1, 3, 3

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)
(3, 3)

Not showing the outputs in output buffer

Two pass, sort-merged-based grouping

27

Tweet

Showing

uid, tlen M = 3

7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)
(3, 3)

Not showing the outputs in output buffer

Two pass, sort-merged-based grouping

28

Tweet

Showing

uid, tlen M = 3

7, 3, 1 3, 5, 5

6, 4, 9 8, 4, 10

6, 4, 9 8, 4, 10

Step 2: Find minimum of each key by “Combine”
approach in merge-sort

Repeatedly find the lest value of the sort key:
next group

5, 1, 7 4, 2, 10

1, 3, 3 3,5, 5

7, 3, 1 2, 2,5

5, 1, 7 4, 2, 10 2, 2,5 1, 3, 3 7, 3, 1 3,5, 5

6, 4, 9 8, 4, 10

(uid, min(tlen))
(1, 7)
(2, 10)
(3, 1)
(4, 9)
(5, 5)

Not showing the outputs in output buffer

Discussion: Problem 2c

Cost?

• 3B(R)

Assumptions?
– Need to hold one block from each run in M pages

– B(R) <= M2

Merge-sort based single pass algorithm?
– Not good here: same IO cost, more CPU cost

One pass vs. Two pass

• One pass:
– smaller disk I/O cost

• e.g. B(R) for one-pass hash-based aggregation

– Handles smaller relations
• e.g. B(R) <= M

• Two/Multi pass:
– Larger disk I/O cost

• e.g. 3B(R) for two-pass hash-based aggregation

– Can handle larger relations
• e.g. B(R) <= M2

Review

• Two-pass Hash-based Join
– Cost: 3B(R) + 3B(S)
– Assumption: Min(B(R), B(S)) <= M^2

• Two-pass Sort-merge-based Join
– Implementation 1:

• Cost: 5B(R) + 5B(S)
– For R, S: sort runs/sublists (2 I/O, read + write)
– Merge sublists to have entire R, S sorted individually (2 I/O, read + write)
– Join by combining R and S (only read, write not counted - 1 I/O)

• Assumption: B(R) <= M2 , B(S)) <= M2

– Implementation 2:
• Cost: 3B(R) + 3B(S)
• Assumption: B(R) + B(S) <= M2

Problem 1
Insertions and Deletion in a B+ tree

• On whiteboard, see the scanned example

• Note: the <, <= assumptions in this class:

40 50 60

30 40 55

Internal node:
• Left pointer from
key = k: to keys < k
• Right pointer: to
keys >= k

70

40 50 60

40 50 60

Leaf node:
• Left pointer from key = k: to the block
containing data with value k in that attribute
• Last remaining pointer on right: To the next
leaf on right

Problem 1
Insertions and Deletion in a B+ tree

• Note: when a leaf is split, the middle (d+1-th) key is copied to
the new leaf on right (and also inserted in parent)

– Since we assumed the right pointer from key = k points to keys >= k

• Note: when an internal node is split, we do not need to copy
the middle (d+1-th) key to the right, only insert it in parent
– Use the left pointer of the new right internal node.

– See the scanned example

