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APPLICATION 
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Japanese “American Idol” 
VOTER BENCHMARK 

1.  Check whether user has already voted. 
2.  Insert new vote entry. 
3.  Update vote count for contestant. 

TRANSACTION 
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MySQL Postgres 
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Argument from VLDB’07 paper  

•  Popular DBMSs based on designs from 70’s 
•  But computer architectures are changing 
•  And applications have new requirements 

•  Past 40 years have seen extensions to 
DBMS design but no major re-design 
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Measured CPU Cycles 
TRADITIONAL DBMS 

OLTP THROUGH THE LOOKING GLASS,  
AND WHAT WE FOUND THERE 
SIGMOD, pp. 981-992, 2008. 
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GUARANTEES 

SCALABILITY 
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NEWSQL NOSQL 
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CAN YOU SCALE 
UP WITHOUT 

GIVING UP 
TRANSACTIONS? 
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Fast Repetitive Small 
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USE A LIGHTWEIGHT 
SYSTEM DESIGNED FOR 
OLTP TRANSACTIONS. 

Optimization 

H-STORE: A HIGH-PERFORMANCE, DISTRIBUTED 
MAIN MEMORY TRANSACTION PROCESSING SYSTEM 
Proc. VLDB Endow., vol. 1, iss. 2, pp. 1496-1499, 2008.  

DISK ORIENTED 

CONCURRENT EXECUTION 
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SERIAL EXECUTION 

COMPACT LOGGING 
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Transaction 
Execution 
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PARTITIONS 

SINGLE-THREADED 
EXECUTION ENGINES 

Transaction 
Result 
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CMD LOG SNAPSHOTS 

Procedure Name 
Input Parameters 

run(phoneNum, contestantId, currentTime) { 
 result = execute(VoteCount, phoneNum); 
 if (result > MAX_VOTES) { 
  return (ERROR); 
 } 
 execute(InsertVote, phoneNum, 

                       contestantId, 
                       currentTime); 

 return (SUCCESS); 
} 

VoteCount: 

SELECT COUNT(*) 
  FROM votes 
 WHERE phone_num = ?;  

InsertVote: 

INSERT INTO votes 
 VALUES (?, ?, ?); 

STORED PROCEDURE 
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MySQL Postgres 
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Distributed Transactions 
•  Discussion based on VLDB’07 paper 
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Database Partitioning 
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ORDERS ITEM 

Replicated 

WAREHOUSE 

TPC-C Schema Schema Tree 
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Database Partitioning 
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<Timestamp, Counter, SiteId> 

#208… 

#208… 

#216… #229… 

#229… #231… 

#231… 

Procedure Name 
Input Parameters 

Distributed Transaction Protocol 

Distributed Transaction Protocol 

P1 P2 P3 P4 

#2084922509960152064 
TransactionInit Response TransactionInit Request TransactionWork Request TransactionWork Response 

TransactionPrepare Request 
TransactionPrepare Response 

TransactionFinish Request 
TransactionFinish Response 

Two-Phase 
Commit 


