
6/3/13

1

CSE 444: Database Internals

Lectures 27
NewSQL

Slides from Andrew Pavlo
Brown University

1

References
•  Scalable SQL and NoSQL Data Stores,

Rick Cattell, SIGMOD Record, December
2010 (Vol. 39, No. 4)

•  The end of an Architectural Era: (It’s
Time for a Complete Rewrite), M.
Stonebraker et. al. VLDB ’07

•  Online documentation: H-Store
2

APPLICATION

3

Japanese “American Idol”
VOTER BENCHMARK

1.  Check whether user has already voted.
2.  Insert new vote entry.
3.  Update vote count for contestant.

TRANSACTION

4

0

10,000

20,000

30,000

40,000

50,000

1 2 3 4 5 6 7 8

Japanese “American Idol”
VOTER BENCHMARK

MySQL Postgres

TXN/SEC CPU CORES

Argument from VLDB’07 paper

•  Popular DBMSs based on designs from 70’s
•  But computer architectures are changing
•  And applications have new requirements

•  Past 40 years have seen extensions to
DBMS design but no major re-design

5

BUFFER POOL

LOCKING

RECOVERY

REAL WORK

28%
30%

30%
12%

6

Measured CPU Cycles
TRADITIONAL DBMS

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

6/3/13

2

GUARANTEES

SCALABILITY

TRADITIONAL

NEWSQL NOSQL

WEAK
(None/Limited)

STRONG
(ACID)

LOW
(One Node)

HIGH
(Many Nodes)

7

CAN YOU SCALE
UP WITHOUT

GIVING UP
TRANSACTIONS?

9

Fast Repetitive Small

10

USE A LIGHTWEIGHT
SYSTEM DESIGNED FOR
OLTP TRANSACTIONS.

Optimization

H-STORE: A HIGH-PERFORMANCE, DISTRIBUTED
MAIN MEMORY TRANSACTION PROCESSING SYSTEM
Proc. VLDB Endow., vol. 1, iss. 2, pp. 1496-1499, 2008.

DISK ORIENTED

CONCURRENT EXECUTION

HEAVYWEIGHT RECOVERY

x

i

/

MAIN MEMORY STORAGE

SERIAL EXECUTION

COMPACT LOGGING

6/3/13

3

Transaction
Execution

A
pp

lic
at

io
n

PARTITIONS

SINGLE-THREADED
EXECUTION ENGINES

Transaction
Result

13

CMD LOG SNAPSHOTS

Procedure Name
Input Parameters

run(phoneNum, contestantId, currentTime) {
 result = execute(VoteCount, phoneNum);
 if (result > MAX_VOTES) {
 return (ERROR);
 }
 execute(InsertVote, phoneNum,

 contestantId,
 currentTime);

 return (SUCCESS);
}

VoteCount:

SELECT COUNT(*)
 FROM votes
 WHERE phone_num = ?;

InsertVote:

INSERT INTO votes
 VALUES (?, ?, ?);

STORED PROCEDURE

14

Japanese “American Idol”
VOTER BENCHMARK

0

50,000

100,000

150,000

200,000

250,000

1 2 3 4 5 6 7 8

H-Store

25x
0

10,000

20,000

30,000

40,000

50,000

1 2 3 4 5 6 7 8

TXN/SEC CPU CORES

MySQL Postgres

15

TPC-C

TELECOM 1

0

8,000

16,000

24,000

32,000

1 2 3 4 5 6 7 8

0

30,000

60,000

90,000

120,000

1 2 3 4 5 6 7 8

H
-S

to
re

M

yS
Q

L
P

os
tg

re
s

TXN/SEC CPU CORES 16 TXN/SEC

TELECOM 1

0
125,000
250,000
375,000

8 16 24 32

TPC-C

0
30,000
60,000
90,000

8 16 24 32

0
300,000
600,000
900,000

8 16 24 32

VOTER

CPU CORES

Distributed Transactions
•  Discussion based on VLDB’07 paper

17

Database Partitioning

DISTRICT

CUSTOMER

ORDER_ITEM

ITEM

STOCK

WAREHOUSE

ORDERS

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS ITEM

Replicated

WAREHOUSE

TPC-C Schema Schema Tree

6/3/13

4

ITEM ITEMj ITEM ITEM ITEM

Database Partitioning

P2

P4

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS

Replicated

WAREHOUSE
P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P3

P3

P3

P3

P3

P3

P4

P4

P4

P4

P4

P4

P5

P5

P5

P5

P5

P5

P5

P3

P1

ITEM ITEM

ITEM ITEM

ITEM

Partitions

ITEM

Schema Tree

P1 P2

P1

P2

#2084922509960152064

<Timestamp, Counter, SiteId>

#208…

#208…

#216… #229…

#229… #231…

#231…

Procedure Name
Input Parameters

Distributed Transaction Protocol

Distributed Transaction Protocol

P1 P2 P3 P4

#2084922509960152064
TransactionInit Response TransactionInit Request TransactionWork Request TransactionWork Response

TransactionPrepare Request
TransactionPrepare Response

TransactionFinish Request
TransactionFinish Response

Two-Phase
Commit

