
1

CSE 444: Database Internals

Lectures 26
NoSQL: Extensible Record Stores

1 Magda Balazinska - CSE 444, Spring 2013

References

•  Scalable SQL and NoSQL Data Stores, Rick
Cattell, SIGMOD Record, December 2010 (Vol.
39, No. 4)

•  Bigtable: A Distributed Storage System for
Structured Data. Fay Chang et. al. OSDI 2006.

•  Online documentation: HBase

Magda Balazinska - CSE 444, Spring 2013 2

What is Bigtable?

•  Distributed storage system
•  Designed to

–  Hold structured data
–  Scale to thousands of servers
–  Store up to several hundred TB (maybe even PB)
–  Perform backend bulk processing
–  Perform real-time data serving

•  To scale, Bigtable has a limited set of features

Magda Balazinska - CSE 444, Spring 2013 3

Bigtable Data Model

•  Sparse, multidimensional sorted map
 (row:string, column:string, time:int64)è string

 Notice how everything but time is a string

•  Example from Fig 1:

Magda Balazinska - CSE 444, Spring 2013 4

Columns are grouped into families

Key Features

•  Read/writes of data under single row key is atomic
–  Only single-row transactions!

•  Data is stored in lexicographical order
–  Improves data access locality
–  Horizontally partitioned into tablets
–  Tablets are unit of distribution and load balancing

•  Column families are unit of access control
•  Data is versioned (old versions garbage collected)

–  Ex: most recent three crawls of each page, with times

Magda Balazinska - CSE 444, Spring 2013 5

Outline

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion

Magda Balazinska - CSE 444, Spring 2013 6

2

API

•  Data definition
–  Creating/deleting tables or column families
–  Changing access control rights

•  Data manipulation
–  Writing or deleting values
–  Looking up values from individual rows
–  Iterate over subset of data in the table

•  Bigtable can serve as input/output for MapReduce
Magda Balazinska - CSE 444, Spring 2013 7

Outline

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion

Magda Balazinska - CSE 444, Spring 2013 8

Chubby Lock Service

•  In a distributed system, agreement is a problem
–  Different failure scenarios are possible
–  Nodes can have inconsistent views of who is up and

who is down
–  Messages can arrive out-of-order at different nodes

•  But need agreement to make decisions
•  Chubby

–  Provides black-box agreement service through lock
abstraction

–  Uses the well-known Paxos algorithm

Magda Balazinska - CSE 444, Spring 2013 9

Google File System

•  A file = A series of chunks
–  Size of a chunk ≥ 64MB
–  Append & read only

•  Fault-tolerance
–  Chunks are distributed
–  Chunks are replicated

•  Master node
–  Decides chunk

placement
–  Decides replica

placement
–  Tells clients where to

find data

Master

File
10

A Table in Bigtable: Basics

A table consists of a set of tablets: Section 5.3
Each tablet stores a range of the table
Each tablet comprises one or more SSTables

11

Table
(example with
two tablets)

Tablet 1

Tablet 2

SSTable

SSTable

SSTable

SSTable

SSTable

Each SSTable is stored in
a GFS file
Initially, a tablet has only
one SSTable
Updates add SSTables
Major compaction puts
everything back into one
SSTable

SSTable Details

•  Persistent map from keys to values
–  Ordered
–  Immutable
–  Keys and values are strings

•  API
–  Look up value associated with a key
–  Iterate over all key/value pairs in given range

•  Implementation
–  Sequence of blocks
–  One block index to locate other blocks

Magda Balazinska - CSE 444, Spring 2013 12

3

SSTable Details

SSTable is a sequence of blocks
Last block is the index to locate other blocks
Index is loaded into memory when SSTable is open
Optionally, whole SSTable can be memory mapped

Magda Balazinska - CSE 444, Spring 2013 13

SSTable is a GFS File

Data Data Data Data Data Data Index

Block

Lookup in SSTable

•  Read index block of SSTable
•  Binary search on index block to find data block
•  Read data block

Magda Balazinska - CSE 444, Spring 2013 14

A Table in Bigtable: Basics

A table consists of a set of tablets: Section 5.3
Each tablet stores a range of the table
Each tablet comprises one or more SSTables

15

Table
(example with
two tablets)

Tablet 1

Tablet 2

SSTable

SSTable

SSTable

SSTable

SSTable

Each SSTable is stored in
a GFS file
Initially, a tablet has only
one SSTable
Updates add SSTables
Major compaction puts
everything back into one
SSTable

BigTable Components

•  A library linked into every client

•  One master server
–  Assigns tablets to tablet servers
–  Ensures load balance between tablet servers
–  Detects when tablet servers come and go
–  Handles schema changes

•  Many tablet servers (can be added/removed)
–  Each server manages a set of tablets (10 to 1K)
–  Loads tablets into memory
–  Handles read and write requests
–  Splits tablets that have grown too large

Magda Balazinska - CSE 444, Spring 2013 16

Finding Tablet Servers

Magda Balazinska - CSE 444, Spring 2013 17

key, and to iterate over all key/value pairs in a specified
key range. Internally, each SSTable contains a sequence
of blocks (typically each block is 64KB in size, but this
is configurable). A block index (stored at the end of the
SSTable) is used to locate blocks; the index is loaded
into memory when the SSTable is opened. A lookup
can be performed with a single disk seek: we first find
the appropriate block by performing a binary search in
the in-memory index, and then reading the appropriate
block from disk. Optionally, an SSTable can be com-
pletely mapped into memory, which allows us to perform
lookups and scans without touching disk.
Bigtable relies on a highly-available and persistent
distributed lock service called Chubby [8]. A Chubby
service consists of five active replicas, one of which is
elected to be the master and actively serve requests. The
service is live when a majority of the replicas are running
and can communicate with each other. Chubby uses the
Paxos algorithm [9, 23] to keep its replicas consistent in
the face of failure. Chubby provides a namespace that
consists of directories and small files. Each directory or
file can be used as a lock, and reads and writes to a file
are atomic. The Chubby client library provides consis-
tent caching of Chubby files. Each Chubby client main-
tains a session with a Chubby service. A client’s session
expires if it is unable to renew its session lease within the
lease expiration time. When a client’s session expires, it
loses any locks and open handles. Chubby clients can
also register callbacks on Chubby files and directories
for notification of changes or session expiration.
Bigtable uses Chubby for a variety of tasks: to ensure
that there is at most one active master at any time; to
store the bootstrap location of Bigtable data (see Sec-
tion 5.1); to discover tablet servers and finalize tablet
server deaths (see Section 5.2); to store Bigtable schema
information (the column family information for each ta-
ble); and to store access control lists. If Chubby becomes
unavailable for an extended period of time, Bigtable be-
comes unavailable. We recently measured this effect
in 14 Bigtable clusters spanning 11 Chubby instances.
The average percentage of Bigtable server hours during
which some data stored in Bigtable was not available due
to Chubby unavailability (caused by either Chubby out-
ages or network issues) was 0.0047%. The percentage
for the single cluster that was most affected by Chubby
unavailability was 0.0326%.

5 Implementation

The Bigtable implementation has three major compo-
nents: a library that is linked into every client, one mas-
ter server, and many tablet servers. Tablet servers can be

dynamically added (or removed) from a cluster to acco-
modate changes in workloads.
The master is responsible for assigning tablets to tablet
servers, detecting the addition and expiration of tablet
servers, balancing tablet-server load, and garbage col-
lection of files in GFS. In addition, it handles schema
changes such as table and column family creations.
Each tablet server manages a set of tablets (typically
we have somewhere between ten to a thousand tablets per
tablet server). The tablet server handles read and write
requests to the tablets that it has loaded, and also splits
tablets that have grown too large.
As with many single-master distributed storage sys-
tems [17, 21], client data does not move through the mas-
ter: clients communicate directly with tablet servers for
reads and writes. Because Bigtable clients do not rely on
the master for tablet location information, most clients
never communicate with the master. As a result, the mas-
ter is lightly loaded in practice.
A Bigtable cluster stores a number of tables. Each ta-
ble consists of a set of tablets, and each tablet contains
all data associated with a row range. Initially, each table
consists of just one tablet. As a table grows, it is auto-
matically split into multiple tablets, each approximately
100-200 MB in size by default.

5.1 Tablet Location
We use a three-level hierarchy analogous to that of a B+-
tree [10] to store tablet location information (Figure 4).

..

.

...

...

..

.

...

..

.

 tablets
METADATA
 Other

Chubby file
...

UserTable1

UserTableN
...

...

...

...

...
Root tablet

(1st METADATA tablet)

Figure 4: Tablet location hierarchy.

The first level is a file stored in Chubby that contains
the location of the root tablet. The root tablet contains
the location of all tablets in a special METADATA table.
Each METADATA tablet contains the location of a set of
user tablets. The root tablet is just the first tablet in the
METADATA table, but is treated specially—it is never
split—to ensure that the tablet location hierarchy has no
more than three levels.
The METADATA table stores the location of a tablet
under a row key that is an encoding of the tablet’s table

To appear in OSDI 2006 4

Hierarchy analogous t B+ tree
On first request, client needs
3 network round trips to find
tablet location

Subsequently, clients
cache tablet locations

Read Operation on Table

•  Assuming simple case of 1 tablet = 1 SSTable

•  Find location of appropriate tablet
–  Find appropriate tablet in the table and its location

•  Use tablet location hierarchy from previous slide
•  Metadata for a tablet contains list of SSTables

–  Then read data from the SSTable

Magda Balazinska - CSE 444, Spring 2013 18

4

Assigning Tablets to
Tablet Servers

•  Problem
–  Need to balance load for serving read/write requests
–  Want to avoid Chubby file and root tablet being hot-spots

•  Solution
–  Master

•  Assigns tablets to tablet servers
•  Manages tablet server churn and load imbalances
•  Processes schema changes

–  Tablet server
•  Loads tablets into memory (i.e., loads index blocks of SSTables)
•  Handles read/write to tablets that it has loaded
•  Splits large tablets

–  Clients cache tablets locations
Magda Balazinska - CSE 444, Spring 2013 19

Writing to Tablets

•  Remember: SSTables are immutable
•  When a write operation arrives at a tablet server:

–  Write mutation to a separate commit log stored in GFS
–  Wait until done
–  Insert the mutation into in-memory buffer: memtable

•  The memtable is sorted lexicographically

•  To serve reads, the tablet server
–  Merges SSTables and memtable into a single view

Magda Balazinska - CSE 444, Spring 2013 20

Tablet Representation

Magda Balazinska - CSE 444, Spring 2013 21

because the tablet server or the master died), the master
detects the new tablet when it asks a tablet server to load
the tablet that has now split. The tablet server will notify
the master of the split, because the tablet entry it finds in
the METADATA table will specify only a portion of the
tablet that the master asked it to load.

5.3 Tablet Serving
The persistent state of a tablet is stored in GFS, as illus-
trated in Figure 5. Updates are committed to a commit
log that stores redo records. Of these updates, the re-
cently committed ones are stored in memory in a sorted
buffer called amemtable; the older updates are stored in a
sequence of SSTables. To recover a tablet, a tablet server

tablet log

GFS

Memory

Write Op
SSTable Files

memtable Read Op

Figure 5: Tablet Representation

reads its metadata from the METADATA table. This meta-
data contains the list of SSTables that comprise a tablet
and a set of a redo points, which are pointers into any
commit logs that may contain data for the tablet. The
server reads the indices of the SSTables into memory and
reconstructs the memtable by applying all of the updates
that have committed since the redo points.
When a write operation arrives at a tablet server, the
server checks that it is well-formed, and that the sender
is authorized to perform the mutation. Authorization is
performed by reading the list of permitted writers from a
Chubby file (which is almost always a hit in the Chubby
client cache). A valid mutation is written to the commit
log. Group commit is used to improve the throughput of
lots of small mutations [13, 16]. After the write has been
committed, its contents are inserted into the memtable.
When a read operation arrives at a tablet server, it is
similarly checked for well-formedness and proper autho-
rization. A valid read operation is executed on a merged
view of the sequence of SSTables and the memtable.
Since the SSTables and the memtable are lexicograph-
ically sorted data structures, the merged view can be
formed efficiently.
Incoming read and write operations can continue
while tablets are split and merged.

5.4 Compactions
As write operations execute, the size of the memtable in-
creases. When the memtable size reaches a threshold, the
memtable is frozen, a new memtable is created, and the
frozen memtable is converted to an SSTable and written
to GFS. This minor compaction process has two goals:
it shrinks the memory usage of the tablet server, and it
reduces the amount of data that has to be read from the
commit log during recovery if this server dies. Incom-
ing read and write operations can continue while com-
pactions occur.
Everyminor compaction creates a new SSTable. If this
behavior continued unchecked, read operations might
need to merge updates from an arbitrary number of
SSTables. Instead, we bound the number of such files
by periodically executing a merging compaction in the
background. A merging compaction reads the contents
of a few SSTables and the memtable, and writes out a
new SSTable. The input SSTables and memtable can be
discarded as soon as the compaction has finished.
A merging compaction that rewrites all SSTables
into exactly one SSTable is called a major compaction.
SSTables produced by non-major compactions can con-
tain special deletion entries that suppress deleted data in
older SSTables that are still live. A major compaction,
on the other hand, produces an SSTable that contains
no deletion information or deleted data. Bigtable cy-
cles through all of its tablets and regularly applies major
compactions to them. These major compactions allow
Bigtable to reclaim resources used by deleted data, and
also allow it to ensure that deleted data disappears from
the system in a timely fashion, which is important for
services that store sensitive data.

6 Refinements

The implementation described in the previous section
required a number of refinements to achieve the high
performance, availability, and reliability required by our
users. This section describes portions of the implementa-
tion in more detail in order to highlight these refinements.

Locality groups

Clients can group multiple column families together into
a locality group. A separate SSTable is generated for
each locality group in each tablet. Segregating column
families that are not typically accessed together into sep-
arate locality groups enables more efficient reads. For
example, page metadata in Webtable (such as language
and checksums) can be in one locality group, and the
contents of the page can be in a different group: an ap-

To appear in OSDI 2006 6

Loading Tablets

•  To load a tablet, a tablet server does the following

•  Finds location of tablet through its METADATA (Fig. 4)
–  Metadata for tablet includes list of SSTables and set of redo points

•  Read SSTables index blocks into memory
–  Recall an SSTable consists of a set of blocks + 1 index block

•  Read the commit log since redo point and reconstructs the
memtable (the METADATA includes the redo point)

Magda Balazinska - CSE 444, Spring 2013 22

Compaction

•  To keep memtables below a threshold
•  Minor compaction: convert memtable into SSTable
•  Merging compaction:

–  Read a few SSTables and the memtable
–  Write out a new SSTable

•  Major compaction:
–  Replace all SSTables and memtable with a new SSTable

Magda Balazinska - CSE 444, Spring 2013 23

Optimizations

•  Vertical partitioning: locality groups
•  Compression of SSTable blocks
•  Caching of SSTable data
•  Additional indexing: bloom filters

–  Avoid reading SSTable that does not have needed data

•  Commit log optimizations
–  Single commit log per tablet server

•  Tablet migration optimization

Magda Balazinska - CSE 444, Spring 2013 24

5

Outline

•  Bigtable API

•  Bigtable architecture

•  Bigtable performance and discussion

Magda Balazinska - CSE 444, Spring 2013 25

Performance

Magda Balazinska - CSE 444, Spring 2013 26

Summary

•  Bigtable is a distributed system for storing
structured data

•  Provides high performance and high availability
•  Scales incrementally
•  Restricted functionality
•  Widely used by many applications at Google

Magda Balazinska - CSE 444, Spring 2013 27

Next Steps

Try HBase
http://hbase.apache.org/

Magda Balazinska - CSE 444, Spring 2013 28

