#### CSE 444: Database Internals

Lectures 25 NoSQL: Key Value Stores

Magda Balazinska - CSE 444, Spring 2013

#### References

- Scalable SQL and NoSQL Data Stores, Rick Cattell, SIGMOD Record, December 2010 (Vol. 39, No. 4)
- Dynamo: Amazon's Highly Available Keyvalue Store. By Giuseppe DeCandia et. al. SOSP 2007.
- · Online documentation: Amazon DynamoDB.

Magda Balazinska - CSE 444, Spring 2013

2

#### **NoSQL Motivation**

- · Originally motivated by Web 2.0 applications
- Goal is to scale simple OLTP-style workloads to thousands or millions of users
- · Users are doing both updates and reads

Magda Balazinska - CSE 444, Spring 2013

# Why NoSQL as the Solution?

- · Scaling a relational DBMS is hard
- · We saw how to scale queries with parallel DBMSs
- Much more difficult to scale transactions
  - Need to partition the database across multiple machines
  - If a transaction touches one machine, life is good
  - If a transaction touches multiple machines, ACID becomes extremely expensive! Need two-phase commit
- Replication
  - Replication can help to increase throughput and lower latency
  - Create multiple copies of each database partition
  - Spread queries across these replicas
- Easy for reads but writes, once again, become expensive!

Magda Balazinska - CSE 444, Spring 2013

## NoSQL Key Feature Decisions

- · Want a data management system that is
  - Elastic and highly scalable
  - Flexible (different records have different schemas)
- · To achieve above goals, willing to give up
  - Complex queries: e.g., give up on joins
  - Multi-object transactions
  - ACID guarantees: e.g., eventual consistency is OK
  - Not all NoSQL systems give up all these properties

Magda Balazinska - CSE 444, Spring 2013

# Cattell, SIGMOD Record 2010

# "Not Only SQL" or "Not Relational"

Six key features:

- 1. Scale horizontally "simple operations"
  - key lookups, reads and writes of one record or a small number of records, simple selections
- 2. Replicate/distribute data over many servers
- 3. Simple call level interface (contrast w/ SQL)
- 4. Weaker concurrency model than ACID
- 5. Efficient use of distributed indexes and RAM
- 6. Flexible schema

Magda Balazinska - CSE 444, Spring 2013

#### ACID Vs BASE

- ACID = Atomicity, Consistency, Isolation, and Durability
- BASE = Basically Available, Soft state, Eventually consistent

Magda Balazinska - CSE 444, Spring 2013

#### **Data Models**

- Tuple = row in a relational db
- Extensible record = families of attributes have a schema, but new attributes may be added
- Document = nested values, extensible records (think XML, JSON, attribute-value pairs)
- Object = like in a programming language, but without methods

Magda Balazinska - CSE 444, Spring 2013

Cattell, SIGMOD Record 2010

Different Types of NoSQL

Taxonomy based on data models:

• Key-value stores

- e.g., Project Voldemort, Memcached

• Extensible Record Stores

- e.g., HBase, Cassandra, PNUTS

• Document stores

- e.g., SimpleDB, CouchDB, MongoDB

• New types of RDBMSs.. not really NoSQL

Monday

## Key-Value Store: Dynamo

- Dynamo: Amazon's Highly Available Keyvalue Store. By Giuseppe DeCandia et. al. SOSP 2007.
- · Main observation:
  - "There are many services on Amazon's platform that only need **primary-key access** to a data store."
  - Best seller lists, shopping carts, customer preferences, session management, sales rank, product catalog

Magda Balazinska - CSE 444, Spring 2013

10

### **Basic Features**

Magda Balazinska - CSE 444, Spring 2013

- · Data model: (key,value) pairs
  - Values are binary objects (blobs)
  - No further schema
- Operations
  - Insert, delete, and lookup operations on keys
  - No operations across multiple data items
- Consistency
  - Replication with eventual consistency
  - Goal to NEVER reject any writes (bad for business)
  - Multiple versions with conflict resolution during reads

Magda Balazinska - CSE 444, Spring 2013

## Operations

- get(key)
  - Locates object replicas associated with key
  - Returns a single object
  - Or a list of objects with conflicting versions
  - Also returns a context
    - Context holds metadata including version
    - · Context is opaque to caller
- put(key, context, object)
  - Determines where replicas of object should be placed
  - Location depends on key value
  - Data stored persistently including context Magda Balazinska - CSE 444, Spring 2013

# Storage: Distributed Hash Table


Implements a distributed storage

- Each key-value pair (k,v) is stored at some server h(k)
- API: write(k,v); read(k)

Use standard hash function: service key k by server h(k)

- Problem 1: a client knows only one server, doesn't know how to access h(k)
- Problem 2. if new server joins, then  $N \rightarrow N+1$ , and the entire hash table needs to be reorganized
- · Problem 3: we want replication, i.e. store the object at more than one server

Magda Balazinska - CSE 444, Spring 2013

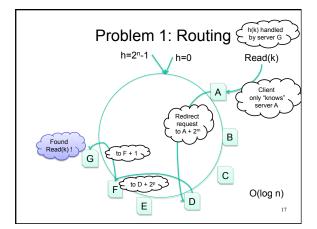


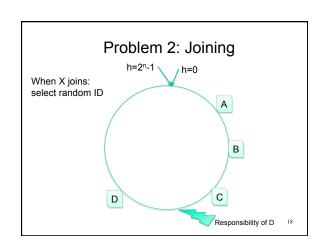
#### Distributed Hash Table Details

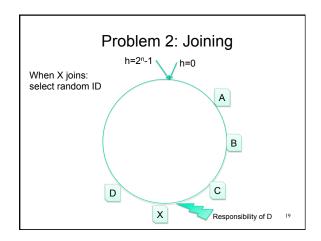
- · This type of hashing called "consistent hashing"
- · Basic approach leads to load imbalance
  - Solution: Use V virtual nodes for each physical node
  - Virtual nodes provide better load balance
  - Nb of virtual nodes can vary based on capacity

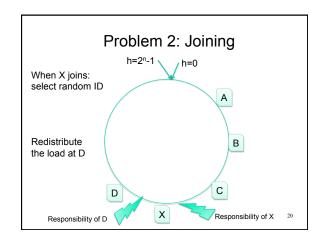
Magda Balazinska - CSE 444, Spring 2013

15


# Problem 1: Routing


A client doesn't know server h(k), but some other server


- Naive routing algorithm:
   Each node knows its neighbors
  - Send message to nearest neighbor

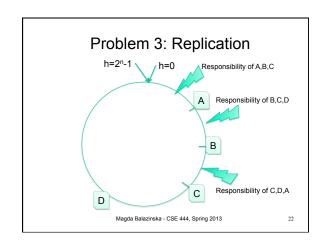

  - Hop-by-hop from thereObviously this is O(n), so no good
- Better algorithm: "finger table"
  - Memorize locations of other nodes in the ring
  - -a, a + 2, a + 4, a + 8, a + 16, ...  $a + 2^n 1$ Send message to closest node to destination
  - Hop-by-hop again: this is log(n)

Magda Balazinska - CSE 444, Spring 2013










# Problem 3: Replication

- Need to have some degree of replication to cope with node failures
- Let N=degree of replication
- Assign key k to h(k), h(k)+1, ..., h(k)+N-1

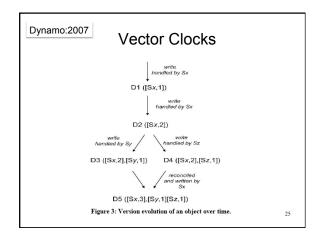
Magda Balazinska - CSE 444, Spring 2013

21



# Additional Dynamo Details

- · Each key assigned to a coordinator
- · Coordinator responsible for replication
  - Replication skips virtual nodes that are not distinct physical nodes
- · Set of replicas for a key is its preference list
- · One-hope routing:
  - Each node knows preference list of each key
- "Sloppy quorum" replication
  - Each update creates a new version of an object
  - Vector clocks track causality between versions


Magda Balazinska - CSE 444, Spring 2013

23

### **Vector Clocks**

- An extension of Multiversion Concurrency Control (MVCC) to multiple servers
- Standard MVCC: each data item X has a timestamp t: X<sub>4</sub>, X<sub>9</sub>, X<sub>10</sub>, X<sub>14</sub>, ..., X<sub>t</sub>
- Vector Clocks: X has set of [server, timestamp] pairs X([s1,t1], [s2,t2],...)

Magda Balazinska - CSE 444, Spring 2013



# Vector Clocks: Example

- A client writes D1 at server SX: D1 ([SX,1])
- Another client reads D1, writes back D2; also handled by server SX:
  D2 ([SX,2]) (D1 garbage collected)
- Another client reads D2, writes back D3; handled by server SY:
  D3 ([SX,2], [SY,1])

Another client reads D2, writes back D4; handled by server SZ: D4 ([SX,2], [SZ,1])

· Another client reads D3, D4: CONFLICT!

Magda Balazinska - CSE 444, Spring 2013

26

## Vector Clocks: Conflict or not?

| Data 1                                  | Data 2          | Conflict ? |
|-----------------------------------------|-----------------|------------|
| ([SX,3],[SY,6])                         | ([SX,3],[SZ,2]) |            |
|                                         |                 |            |
|                                         |                 |            |
|                                         |                 |            |
|                                         |                 |            |
|                                         |                 |            |
| Magda Balazinska - CSE 444, Spring 2013 |                 |            |

Vector Clocks: Conflict or not?

| Data 1          | Data 2          | Conflict ? |
|-----------------|-----------------|------------|
| ([SX,3],[SY,6]) | ([SX,3],[SZ,2]) | Yes        |
|                 |                 |            |
|                 |                 |            |
|                 |                 |            |
|                 |                 |            |

Magda Balazinska - CSE 444, Spring 2013

28

30

## Vector Clocks: Conflict or not?

| Data 1          | Data 2          | Conflict ? |
|-----------------|-----------------|------------|
| ([SX,3],[SY,6]) | ([SX,3],[SZ,2]) | Yes        |
| ([SX,3])        | ([SX,5])        |            |
|                 |                 |            |
|                 |                 |            |
|                 |                 |            |

Magda Balazinska - CSE 444, Spring 2013

29

## Vector Clocks: Conflict or not?

| Data 1          | Data 2          | Conflict ? |
|-----------------|-----------------|------------|
| ([SX,3],[SY,6]) | ([SX,3],[SZ,2]) | Yes        |
| ([SX,3])        | ([SX,5])        | No         |
|                 |                 |            |
|                 |                 |            |
|                 |                 |            |

Magda Balazinska - CSE 444, Spring 2013

# Vector Clocks: Conflict or not?

| Data 1          | Data 2                 | Conflict ? |
|-----------------|------------------------|------------|
| ([SX,3],[SY,6]) | ([SX,3],[SZ,2])        | Yes        |
| ([SX,3])        | ([SX,5])               | No         |
| ([SX,3],[SY,6]) | ([SX,3],[SY,6],[SZ,2]) |            |
|                 |                        |            |
|                 |                        |            |

Magda Balazinska - CSE 444, Spring 2013

31

33

35

## Vector Clocks: Conflict or not?

| Data 1          | Data 2                 | Conflict ? |
|-----------------|------------------------|------------|
| ([SX,3],[SY,6]) | ([SX,3],[SZ,2])        | Yes        |
| ([SX,3])        | ([SX,5])               | No         |
| ([SX,3],[SY,6]) | ([SX,3],[SY,6],[SZ,2]) | No         |
|                 |                        |            |
|                 |                        |            |

Magda Balazinska - CSE 444, Spring 2013

## Vector Clocks: Conflict or not?

| Data 1           | Data 2                 | Conflict ? |
|------------------|------------------------|------------|
| ([SX,3],[SY,6])  | ([SX,3],[SZ,2])        | Yes        |
| ([SX,3])         | ([SX,5])               | No         |
| ([SX,3],[SY,6])  | ([SX,3],[SY,6],[SZ,2]) | No         |
| ([SX,3],[SY,10]) | ([SX,3],[SY,6],[SZ,2]) |            |
|                  |                        |            |

Magda Balazinska - CSE 444, Spring 2013

# Vector Clocks: Conflict or not?

| Data 1           | Data 2                 | Conflict ? |
|------------------|------------------------|------------|
| ([SX,3],[SY,6])  | ([SX,3],[SZ,2])        | Yes        |
| ([SX,3])         | ([SX,5])               | No         |
| ([SX,3],[SY,6])  | ([SX,3],[SY,6],[SZ,2]) | No         |
| ([SX,3],[SY,10]) | ([SX,3],[SY,6],[SZ,2]) | Yes        |
|                  |                        |            |

Magda Balazinska - CSE 444, Spring 2013

Vector Clocks: Conflict or not?

| Data 1           | Data 2                  | Conflict ? |
|------------------|-------------------------|------------|
| ([SX,3],[SY,6])  | ([SX,3],[SZ,2])         | Yes        |
| ([SX,3])         | ([SX,5])                | No         |
| ([SX,3],[SY,6])  | ([SX,3],[SY,6],[SZ,2])  | No         |
| ([SX,3],[SY,10]) | ([SX,3],[SY,6],[SZ,2])  | Yes        |
| ([SX,3],[SY,10]) | ([SX,3],[SY,20],[SZ,2]) |            |

Magda Balazinska - CSE 444, Spring 2013

# Vector Clocks: Conflict or not?

| Data 1           | Data 2                  | Conflict ? |
|------------------|-------------------------|------------|
| ([SX,3],[SY,6])  | ([SX,3],[SZ,2])         | Yes        |
| ([SX,3])         | ([SX,5])                | No         |
| ([SX,3],[SY,6])  | ([SX,3],[SY,6],[SZ,2])  | No         |
| ([SX,3],[SY,10]) | ([SX,3],[SY,6],[SZ,2])  | Yes        |
| ([SX,3],[SY,10]) | ([SX,3],[SY,20],[SZ,2]) | No         |

Magda Balazinska - CSE 444, Spring 2013

# Operation Execution

- · Write operations
  - Initial request sent to coordinator
  - Coordinator generates vector clock & stores locally
  - Coordinator forwards new version to all N replicas
  - If at least W-1 < N-1 nodes respond then success!
- · Read operations
  - Initial request sent to coordinator
  - Coordinator requests data from all N replicas
  - Once gets R responses, returns data
- Sloppy quorum: Involve first N healthy nodes

Magda Balazinska - CSE 444, Spring 2013

37

# **Next Steps**

## Try Amazon DynamoDB

http://aws.amazon.com/dynamodb/

Magda Balazinska - CSE 444, Spring 2013