CSE 444: Database Internals

Lecture 24 Replication

Magda Balazinska - CSE 444, Spring 2013

References

- · Book Chapter 20.6
- · Database management systems.

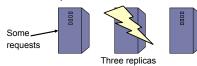
Ramakrishnan and Gehrke.

Third Ed. Chapter 22.11 (more info than our main book)

Magda Balazinska - CSE 444, Spring 2013

Spring 2013

requests


Outline

- · Goals of replication
- · Three types of replication
 - Eager replication
 - Lazy replication
 - Two-tier replication

Magda Balazinska - CSE 444, Spring 2013

Goals of Replication

- · Goal 1: availability
- Goal 2: performance

• But, it's easy to build a replicated system that reduces performance and availability

Magda Balazinska - CSE 444, Spring 2013

Eager Replication

- · Also called synchronous replication
- All updates are applied to all replicas (or to a majority) as part of a single transaction (need two phase commit)
- · Main goal: as if there was only one copy
 - Maintain consistency
 - Maintain one-copy serializability
 - I.e., execution of transactions has same effect as an execution on a non-replicated db
- Transactions must acquire global locks

 Magda Balazinska CSE 444, Spring 2013

Eager Master

- One master for each object holds primary copy
 - The "Master" is also called "Primary"
 - To update object, transaction must acquire a lock at the master
 - Lock at the master is global lock

Magda Balazinska - CSE 444, Spring 2013

Crash Failures

- What happens when a secondary crashes?
 - Nothing happens
 - When secondary recovers, it catches up
- · What happens when the master/primary fails?
 - Blocking would hurt availability
 - Must chose a new primary: run election

Magda Balazinska - CSE 444, Spring 2013

Network Failures

- · Network failures can cause trouble...
 - Secondaries think that primary failed
 - Secondaries elect a new primary
 - But primary can still be running
 - Now have two primaries!

Magda Balazinska - CSE 444, Spring 2013

Majority Consensus

- · To avoid problem, only majority partition can continue processing at any time
- · In general,
 - Whenever a replica fails or recovers...
 - a set of communicating replicas must determine...
 - whether they have a majority before they can continue

Magda Balazinska - CSE 444, Spring 2013

Eager Group

- · With n copies
 - Exclusive lock on x copies is global exclusive lock
 - Shared lock on s copies is global shared lock
 - Must have: 2x > n and s + x > n
- · Majority locking
 - s = x = [(n+1)/2]
 - No need to run any reconfiguration algorithms
- · Read-locks-one, write-locks-all
 - s=1 and x = n, high read performance
 - Need to make sure algo runs on quorum of computers

Magda Balazinska - CSE 444, Spring 2013

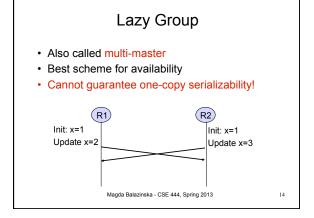
Eager Replication Properties

- · Favours consistency over availability
 - Only majority partition can process requests
 - There appears to be a single copy of the db
- · High runtime overhead
 - Must lock and update at least majority of replicas
 - Two-phase commit
 - Runs at pace of slowest replica in quorum
 - So overall system is now slower
 - Higher deadlock rate (transactions take longer)

Magda Balazinska - CSE 444, Spring 2013

11

Lazy Replication


- · Also called asynchronous replication
- · Also called optimistic replication
- · Main goals: availability and performance
- · Approach
 - One replica updated by original transaction
 - Updates propagate asynchronously to other replicas

Magda Balazinska - CSE 444, Spring 2013

Lazy Master

- · One master holds primary copy
 - Transactions update primary copy
 - Master asynchronously propagates updates to replicas, which process them in same order
 - Ensures single-copy serializability
- · What happens when master/primary fails?
 - Can lose most recent transactions when primary fails!
 - After electing a new primary, secondaries must agree who is most up-to-date

Magda Balazinska - CSE 444, Spring 2013

Lazy Group

- · Cannot guarantee one-copy serializability!
- · Instead guarantee convergence
 - Db state does not reflect any serial execution
 - But all replicas have the same state
- · Detect conflicts and reconcile replica states
- · Different reconciliation techniques are possible
 - Manual
 - Most recent timestamp wins
 - Site A wins over site B
 - User-defined rules, etc.

Magda Balazinska - CSE 444, Spring 2013

15

Detecting Conflicts
Using Timestamps

R1

Init: x=1 at T₀
Update at T₁: x=2

x=2, Old: T₀ New: T₁

x=2 at T₁

Magda Balazinska - CSE 444, Spring 2013

Detecting Conflicts Using Timestamps (R1) Init: x=1 at T₀ Init: x=1 at T_o Update at T₁: x=2 x=2, Old: T₀ New: T Update at T₂: x=3 Conflict! Conflict! Reconciliation rule Reconciliation rule $T_2 > T_1$, so x=3 $T_2 > T_1$, so x=3 Magda Balazinska - CSE 444, Spring 2013 17

Lazy Group Replication Properties

- · Favours availability over consistency
 - Can read and update any replica
 - High runtime performance
- · Weak consistency
 - Conflicts and reconciliation

Magda Balazinska - CSE 444, Spring 2013

3

Two-Tier Replication

- · Benefits of lazy master and lazy group
- Each object has a master with primary copy
- When disconnected from master
 - Secondary can only run tentative transactions
- · When reconnects to master
 - Master reprocesses all tentative transactions
 - Checks an acceptance criterion
 - If passes, we now have final commit order
 - Secondary undoes tentative and redoes committed

Magda Balazinska - CSE 444, Spring 2013

10

Conclusion

- · Replication is a very important problem
 - Fault-tolerance (various forms of replication)
 - Caching (lazy master)
 - Warehousing (lazy master)
 - Mobility (two-tier techniques)
- Replication is complex, but basic techniques and trade-offs are **very well known**
 - Eager or lazy replication
 - Master or no master
 - For eager replication: use quorum

Magda Balazinska - CSE 444, Spring 2013