CSE 444: Database Internals

Lectures 21 MapReduce

Magda Balazinska - CSE 444, Spring 2013

References

 MapReduce: Simplified Data Processing on Large Clusters. Jeffrey Dean and Sanjay Ghemawat. OSDI'04.

Magda Balazinska - CSE 444, Spring 2013

Outline

- · Review high-level MR ideas from 344
- · Discuss implementation in greater detail

Magda Balazinska - CSE 444, Spring 2013

Map Reduce Review

- Google: [Dean 2004]
- · Open source implementation: Hadoop
- MapReduce = high-level programming model and implementation for large-scale parallel data processing

Magda Balazinska - CSE 444, Spring 2013

MapReduce Motivation

- Not designed to be a DBMS
- Designed to simplify task of writing parallel programs
 - A simple programming model that applies to many large-scale computing problems
- · Hides messy details in MapReduce runtime library:
 - Automatic parallelization
 - Load balancing
 - Network and disk transfer optimizations
 - Handling of machine failures
 - Robustness
 - Improvements to core library benefit all users of library!

Magda Balazinska - CSE 444, Spring 2013

content in part from: Jeff Dean

Data Processing at Massive Scale

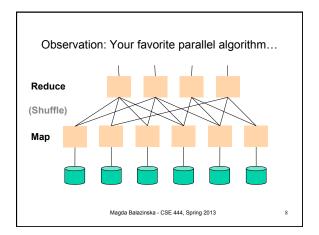
- · Want to process petabytes of data and more
- · Massive parallelism:
 - 100s, or 1000s, or 10000s servers (think data center)
 - Many hours
- · Failure:
 - If medium-time-between-failure is 1 year
 - Then 10000 servers have one failure / hour

Magda Balazinska - CSE 444, Spring 2013

Data Storage: GFS/HDFS

- · MapReduce job input is a file
- Common implementation is to store files in a highly scalable file system such as GFS/HDFS
 - GFS: Google File System
 - HDFS: Hadoop File System
 - Each data file is split into M blocks (64MB or more)
 - Blocks are stored on random machines & replicated
 - Files are append only

Magda Balazinska - CSE 444, Spring 2013



Typical Problems Solved by MR

- · Read a lot of data
- Map: extract something you care about from each record
- · Shuffle and Sort
- · Reduce: aggregate, summarize, filter, transform
- · Write the results

Outline stays the same, map and reduce change to fit the problem

Magda Balazinska - CSE 444, Spring 2013

slide source: Jeff Dean

11

Data Model

Files!

A file = a bag of (key, value) pairs

A MapReduce program:

- Input: a bag of (inputkey, value) pairs
- Output: a bag of (outputkey, value) pairs

Magda Balazinska - CSE 444, Spring 2013

10

Step 1: the MAP Phase

User provides the MAP-function:

- Input: (input key, value)
- Ouput: bag of (intermediate key, value)

System applies map function in parallel to all (input key, value) pairs in the input file

Magda Balazinska - CSE 444, Spring 2013

Step 2: the REDUCE Phase

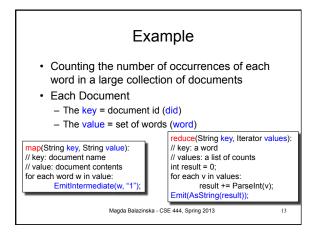
User provides the **REDUCE** function:

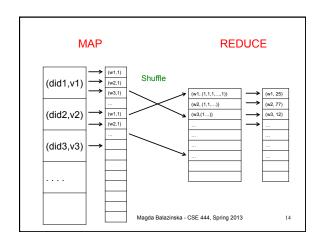
- · Input:
 - (intermediate key, bag of values)
- Output (original MR paper): bag of output (values)
- Output (Hadoop): bag of (output key, values)

System groups all pairs with the same intermediate key, and passes the bag of values to the REDUCE function

Magda Balazinska - CSE 444, Spring 2013

12





Jobs v.s. Tasks

- A MapReduce Job
 - One single "query", e.g. count the words in all docs
 - More complex queries may consists of multiple jobs
- · A Map Task, or a Reduce Task
 - A group of instantiations of the map-, or reducefunction, which are scheduled on a single worker

Magda Balazinska - CSE 444, Spring 2013

15

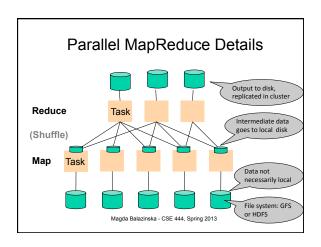
Workers

- A worker is a process that executes one task at a time
- Typically there is one worker per processor, hence 4 or 8 per node
- · Often talk about "slots"
 - E.g., Each server has 2 map slots and 2 reduce slots

Magda Balazinska - CSE 444, Spring 2013

16

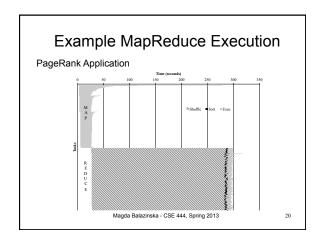
REDUCE Tasks MAP Tasks Shuffle (w1,1) (did1,v1) (w2,1) (w3,1) (w1, (1,1,1,...,1)) (w1, 25) (w2. (1.1...)) (w2, 77) (did2,v2) (w1,1) (w3, 12) (w2,1) (did3,v3) 17

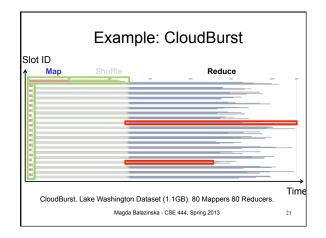


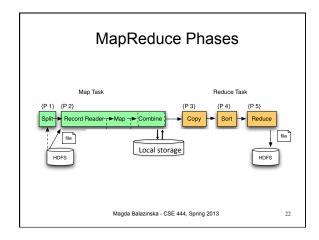
MapReduce Implementation

- There is one master node
- Input file gets partitioned further into M' splits
 Each split is a contiguous piece of the input file
- Master assigns workers (=servers) to the M' map tasks, keeps track of their progress
- · Workers write their output to local disk
- Output of each map task is partitioned into R regions
- Master assigns workers to the R reduce tasks
- Reduce workers read regions from the map workers' local disks

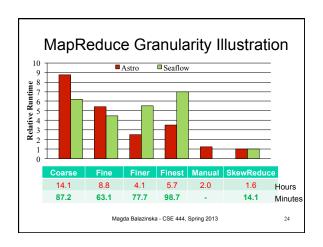
Magda Balazinska - CSE 444, Spring 2013







Interesting Implementation Details Worker failure: Master pings workers periodically, If down then reassigns its task to another worker (≠ a parallel DBMS restarts whole query) How many map and reduce tasks: Larger is better for load balancing But more tasks also add overheads (≠ parallel DBMS spreads ops across all nodes)



Interesting Implementation Details

Backup tasks:

- Straggler = a machine that takes unusually long time to complete one of the last tasks. Eg:
 - Bad disk forces frequent correctable errors (30MB/s → 1MB/s)
 - The cluster scheduler has scheduled other tasks on that machine
- · Stragglers are a main reason for slowdown
- Solution: pre-emptive backup execution of the last few remaining in-progress tasks

Magda Balazinska - CSE 444, Spring 2013

25

Parallel DBMS vs MapReduce

- Parallel DBMS
 - Relational data model and schema
 - Declarative query language: SQL
 - Many pre-defined operators: relational algebra
 - Can easily combine operators into complex queries
 - Query optimization, indexing, and physical tuning
 - Streams data from one operator to the next without blocking
 - Can do more than just run gueries: Data management
 - Updates and transactions, constraints, security, etc.

Magda Balazinska - CSE 444, Spring 2013

26

Parallel DBMS vs MapReduce

- MapReduce
 - Data model is a file with key-value pairs!
 - No need to "load data" before processing it
 - Easy to write user-defined operators
 - Can easily add nodes to the cluster (no need to even restart)
 - Uses less memory since processes one key-group at a time
 - Intra-query fault-tolerance thanks to results on disk
 - Intermediate results on disk also facilitate scheduling
 - Handles adverse conditions: e.g., stragglers
 - Arguably more scalable... but also needs more nodes!

Magda Balazinska - CSE 444, Spring 2013

27

Declarative Languages on MR

- · PIG Latin (Yahoo!)
 - New language, like Relational Algebra
 - Open source
- · HiveQL (Facebook)
 - SQL-like language
 - Open source
- SQL / Tenzing (Google)
 - SQL on MR
 - Proprietary

Magda Balazinska - CSE 444, Spring 2013

28

Background: Pig system A = LOAD 'file1' AS (sid,pid,mass,px:double); B = LOAD 'file2' AS (sid,pid,mass,px:double); C = FILTER A BY px < 1.0; D = JOIN C BY sid, B BY sid; STORE g INTO 'output.txt'; Pig parser Pig campler Parsed program Pig complete Parsed program Pig complete Parsed program Pa

MapReduce State

- · Lots of extensions to address limitations
 - Capabilities to write DAGs of MapReduce jobs
 - Declarative languages (see 344)
 - Ability to read from structured storage (e.g., indexes)
 - Etc.
- · Most companies use both types of engines
- · Increased integration of both engines

Magda Balazinska - CSE 444, Spring 2013

30