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CSE 444: Database Internals 

Lectures 19-20 
Parallel DBMSs 
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What We Have Already Learned 

•  Overall architecture of a DBMS 
•  Internals of query execution: 

–  Data storage and indexing 
–  Buffer management 
–  Query evaluation including operator algorithms 
–  Query optimization 

•  Internals of transaction processing: 
–  Concurrency control: pessimistic and optimistic 
–  Transaction recovery: undo, redo, and undo/redo 
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Where We Are Headed Next 

•  Scaling the execution of a query (this week) 
–  Parallel DBMS 
–  MapReduce 
–  Distributed query processing and optimization 

•  Scaling transactions (next week) 
–  Distributed transactions 
–  Replication 

•  Scaling with NoSQL and NewSQL (in two weeks) 
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DBMS Deployment: Local 
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Data files on disk 

DBMS 

Application 

Desktop 

Great for one application 
(could be more) and one 
user. 
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DBMS Deployment: Client/Server 

Data files 

connection 
(ODBC, JDBC) 

5 Applications 

Server 

Great for many apps and 
many users 
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DBMS Deployment: 3 Tiers 

Data files 
6 Browser 

DB Server 

Great for web-based 
applications 

Web Server &  
App Server 

Connection 
(e.g., JDBC) 

HTTP/SSL 



2 

Magda Balazinska - CSE 444, Spring 2013 

DBMS Deployment: Cloud 

7 Users 

Great for web-based 
applications 

HTTP/SSL 

Developers 

Data files 

DB Server Web & App Server 

How to Scale a DBMS? 
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Scale up 

Scale out 
A more  

powerful server 

More servers 

Why Do I Care About Scaling 
Transactions Per Second? 

•  Amazon 
•  Facebook 
•  Twitter 
•  … your favorite Internet application…  

•  Goal is to scale OLTP workloads 

•  We will get back to this next week 
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Why Do I Care About Scaling A 
Single Query? 

•  Goal is to scale OLAP workloads 

•  That means the analysis of massive datasets 
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This Week: Focus on Scaling a 
Single Query 
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Science is Facing a Data Deluge! 

•  Astronomy: High-resolution, high-frequency sky surveys (SDSS, 
LSST) 

•  Medicine: ubiquitous digital records, MRI, ultrasound 
•  Biology: lab automation, high-throughput sequencing  
•  Oceanography: high-resolution models, cheap sensors, 

satellites 
•  Etc.  

12 

Data holds the promise to 
accelerate discovery 

But analyzing all this data 
is a challenge 
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Industry is Facing a Data Deluge! 

•  Clickstreams, search logs, network logs, social 
networking data, RFID data, etc. 

•  Examples: Facebook, Twitter, Google, 
Microsoft, Amazon, Walmart, etc. 
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Data holds the promise to deliver 
new and better services 

But analyzing all this data 
is a challenge 
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Big Data 

•  Companies, organizations, scientists have data 
that is too big, too fast, and too complex to 
be managed without changing tools and 
processes 

•  Relational algebra and SQL are easy to 
parallelize and parallel DBMSs have already 
been studied in the 80's! 
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Data Analytics Companies 
As a result, we are seeing an explosion of and a huge success of db 
analytics companies 

•  Greenplum founded in 2003 acquired by EMC in 2010; A parallel 
shared-nothing DBMS (this lecture) 

•  Vertica founded in 2005 and acquired by HP in 2011; A parallel, 
column-store shared-nothing DBMS (see 444 for discussion of 
column-stores) 

•  DATAllegro founded in 2003 acquired by Microsoft in 2008; A 
parallel, shared-nothing DBMS 

•  Aster Data Systems founded in 2005 acquired by Teradata in 
2011; A parallel, shared-nothing, MapReduce-based data 
processing system (next lecture).  SQL on top of MapReduce 

•  Netezza founded in 2000 and acquired by IBM in 2010. A parallel, 
shared-nothing DBMS. 

Great time to be in the data management, data mining/statistics, or machine learning! 
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Two Approaches to Parallel Data 
Processing 

•  Parallel databases, developed starting with the 
80s (this lecture) 
–  For both OLTP (transaction processing)  
–  And for OLAP (Decision Support Queries) 

•  MapReduce, first developed by Google, 
published in 2004 (next lecture) 
–  Only for Decision Support Queries 

Today we see convergence of the two approaches (Greenplum,Tenzing SQL) 
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References 

•  Book Chapter 20.1 
 

•  Database management systems. 
 Ramakrishnan and Gehrke.  
 Third Ed. Chapter 22.11 
 (more info than our main book) 

 
  

Parallel v.s. Distributed 
Databases 

•  Distributed database system (early next week): 
–  Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

•  Parallel database system (today): 
–  Improve performance through parallel 

implementation 

18 Magda Balazinska - CSE 444, Spring 2013 



4 

Parallel DBMSs 

•  Goal 
–  Improve performance by executing multiple 

operations in parallel 
 
•  Key benefit 

–  Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
–  Ensure overhead and contention do not kill 

performance 
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Performance Metrics  
for Parallel DBMSs 

Speedup  
•  More processors è higher speed 
•  Individual queries should run faster 
•  Should do more transactions per second (TPS) 
•  Fixed problem size overall, vary # of processors 

("strong scaling”) 

20 Magda Balazinska - CSE 444, Spring 2013 

Linear v.s. Non-linear Speedup 

# processors (=P) 

Speedup 
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Performance Metrics  
for Parallel DBMSs 

Scaleup 
•  More processors è can process more data 
•  Fixed problem size per processor, vary # of 

processors ("weak scaling”) 
•  Batch scaleup 

–  Same query on larger input data should take the same time 

•  Transaction scaleup 
–  N-times as many TPS on N-times larger database 
–  But each transaction typically remains small 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 
Scaleup 

×1 ×5 ×10 ×15 
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Warning 

•  Be careful. Commonly used terms today: 
–  “scale up” = use an increasingly more powerful server 
–  “scale out” = use a larger number of servers 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
–  Cost of starting an operation on many processors 

•  Interference 
–  Contention for resources between processors 

•  Skew 
–  Slowest processor becomes the bottleneck 
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Architectures for Parallel Databases 
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From: Greenplum Database Whitepaper  

SAN = “Storage Area Network” 
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Shared Memory 

•  Nodes share both RAM and disk 
•  Dozens to hundreds of processors 

Example: SQL Server runs on a single machine 
and can leverage many threads to get a query to 
run faster (see query plans) 

•  Easy to use and program 
•  But very expensive to scale 
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Shared Disk 

•  All nodes access the same disks 
•  Found in the largest "single-box" (non-cluster) 

multiprocessors 

Oracle dominates this class of systems 

Characteristics: 
•  Also hard to scale past a certain point: existing 

deployments typically have fewer than 10 
machines 
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Shared Nothing 
•  Cluster of machines on high-speed network 
•  Called "clusters" or "blade servers” 
•  Each machine has its own memory and disk: lowest 

contention. 
 
NOTE: Because all machines today have many cores and 
many disks, then shared-nothing systems typically run 
many "nodes” on a single physical machine. 

Characteristics: 
•  Today, this is the most scalable architecture. 
•  Most difficult to administer and tune. 

We discuss only Shared Nothing in class 29 

In Class 

•  You have a parallel machine.  Now what?   

•  How do you speed up your DBMS? 
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• Purchase 

• pid=pid 

• cid=cid 

• Customer 

• Product 
• Purchase 

• pid=pid 

• cid=cid 

• Customer 

• Product 

Approaches to 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 
–  Only for OLTP queries 

•  Inter-operator parallelism 
–  A query runs on multiple processors 
–  An operator runs on one processor 
–  For both OLTP and Decision Support 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
–  For both OLTP and Decision Support 
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• Purchase 

• pid=pid 

• cid=cid 

• Customer 

• Product 

• Purchase 

• pid=pid 

• cid=cid 

• Customer 

• Product 

• Purchase 

• pid=pid 

• cid=cid 

• Customer 

• Product 
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Horizontal Data Partitioning 

•  Relation R split into P chunks R0, …, RP-1, stored at 
the P nodes 

•  Block partitioned 
–  Each group of k tuples go to a different node 

•  Hash based partitioning on attribute A: 
–  Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
–  Tuple t to chunk i if vi-1 < t.A < vi 
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Uniform Data v.s. Skewed Data 
•  Let R(K,A,B,C); which of the following partition 

methods may result in skewed partitions? 

•  Block partition 

•  Hash-partition 
–  On the key K 
–  On the attribute A 

•  Range-partition 
–  On the key K 
–  On the attribute A 

Uniform 

Uniform 

May be skewed 

Assuming uniform 
hash function 

E.g. when all records 
have the same value 
of the attribute A, then 
all records end up in the 
same partition 

May be skewed Difficult to partition 
the range of A uniformly.  

Magda Balazinska - CSE 444, Spring 2013 33 34 

Example from Teradata 

AMP = unit of parallelism 
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Horizontal Data Partitioning 

•  All three choices are just special cases: 
–  For each tuple, compute bin = f(t) 
–  Different properties of the function f determine hash 

vs. range vs. round robin vs. anything 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ? 
–  Block partitioned 
–  Hash partitioned 
–  Range partitioned 
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Parallel Selection 

•  Q: What is the cost on a parallel database with 
P nodes ? 

•  A: B(R) / P in all cases if cost is response time 

•  However, different processors do the work: 
–  Block: all servers do the work 
–  Hash: one server for σA=v(R), all for σv1<A<v2(R) 
–  Range: some servers only 
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Data Partitioning Revisited 

What are the pros and cons ? 
 
•  Block based partitioning 

–  Good load balance but always needs to read all the data 
•  Hash based partitioning  

–  Good load balance 
–  Can avoid reading all the data for equality selections 

•  Range based partitioning 
–  Can suffer from skew (i.e., load imbalances) 
–  Can help reduce skew by creating uneven partitions 
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Parallel Group By:  γA, sum(B)(R) 

•  Step 1: server i partitions chunk Ri using a hash 
function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

•  Step 2: server i sends partition Rij to serve j 

•  Step 3:  server j computes γA, sum(B) on  
R0j, R1j, …, RP-1,j  
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Parallel GroupBy 

γA,sum(C)(R) 
•  If R is partitioned on A, then each node 

computes the group-by locally 
•  Otherwise, hash-partition R(K,A,B,C) on A, then 

compute group-by locally: 
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R1  R2  RP  .  .  . 

R1’  R2’  RP’  .  .  . 

Reshuffle R 
on attribute A 

Parallel Group By:  γA, sum(B)(R) 

•  Can we do better? 
•  Sum? 
•  Count? 
•  Avg? 
•  Max? 
•  Median? 

41 Magda Balazinska - CSE 444, Spring 2013 

Parallel Group By:  γA, sum(B)(R) 

•  Sum(B) = Sum(B0) + Sum(B1) + … + Sum(Bn) 
•  Count(B) = Count(B0) + Count(B1) + … + Count(Bn) 
•  Max(B) = Max(Max(B0), Max(B1), …, Max(Bn)) 

•  Avg(B) = Sum(B) / Count(B) 

•  Median(B) =  

42 

distributive 

algebraic 

holistic 

Magda Balazinska - CSE 444, Spring 2013 



8 

Parallel Join:  R ⋈A=B S 

•  Step 1 
–  For all servers in [0,k], server i partitions chunk Ri using a 

hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   
–  For all servers in [k+1,P], server j partitions chunk Sj 

using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1   
 
•  Step 2:  

–  Server i sends partition Riu to server u 
–  Server j sends partition Sju to server u 

 
•  Steps 3: Server u computes the join of Riu with Sju 
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Overall Architecture 

44 
From: Greenplum Database Whitepaper  

SQL Query 
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Example of Parallel Query Plan 

SELECT *  
  FROM Orders o, Lines i 

 WHERE o.item = i.item 

   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Example Parallel Plan 

Node 1 Node  2 Node 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

Node 1 Node 2 Node 3 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example Parallel Plan 

Node 1 Node 2 Node 3 

scan 
Item i 

Node 1 Node 2 Node 3 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

join 

scan 
date = today() 

o.item = i.item 

Order o 
Item i 
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Example Parallel Plan 

Node 1 Node 2 Node 3 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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Optimization for Small Relations 

•  When joining R and S 
•  If |R| >> |S| 

–  Leave R where it is 
–  Replicate entire S relation across nodes 

•  Sometimes called a “small join” 
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Other Interesting Parallel 
Join Implementation 

Problem of skew during join computation 

–  Some join partitions get more input tuples than others 
•  Reason 1: Base data unevenly distributed across machines 

–  Because used a range-partition function 
–  Or used hashing but some values are very popular 

•  Reason 2: Selection before join with different selectivities 
•  Reason 3: Input data got unevenly rehashed (or otherwise 

repartitioned before the join) 

–  Some partitions output more tuples than others 
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Some Skew Handling Techniques 
1.  Use range- instead of hash-partitions 

–  Ensure that each range gets same number of tuples 
–  Example: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6] 

2.  Create more partitions than nodes 
–  And be smart about scheduling the partitions 

3.  Use subset-replicate (i.e., “skewedJoin”) 
–  Given an extremely common value ‘v’ 
–  Distribute R tuples with value v randomly across k 

nodes (R is the build relation) 
–  Replicate S tuples with value v to same k machines 

(S is the probe relation) 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add a special shuffle operator 
–  Handle data routing, buffering, and flow control 
–  Inserted between consecutive operators in the query plan 
–  Two components: ShuffleProducer and ShuffleConsumer 
–  Producer pulls data from operator and sends to n 

consumers 
•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and 
makes it available to operator through getNext interface 
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Modern Shared Nothing  
Parallel DBMSs 

•  Greenplum founded in 2003 acquired by EMC in 2010 
•  Vertica founded in 2005 and acquired by HP in 2011 
•  DATAllegro founded in 2003 acquired by Microsoft in 

2008  
•  Netezza founded in 2000 and acquired by IBM in 2010 
•  Aster Data Systems founded in 2005 acquired by 

Teradata in 2011  
–  MapReduce-based data processing system (next week) 
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