
1

CSE 444: Database Internals

Lectures 19-20
Parallel DBMSs

1 Magda Balazinska - CSE 444, Spring 2013

What We Have Already Learned

•  Overall architecture of a DBMS
•  Internals of query execution:

–  Data storage and indexing
–  Buffer management
–  Query evaluation including operator algorithms
–  Query optimization

•  Internals of transaction processing:
–  Concurrency control: pessimistic and optimistic
–  Transaction recovery: undo, redo, and undo/redo

Magda Balazinska - CSE 444, Spring 2013 2

Where We Are Headed Next

•  Scaling the execution of a query (this week)
–  Parallel DBMS
–  MapReduce
–  Distributed query processing and optimization

•  Scaling transactions (next week)
–  Distributed transactions
–  Replication

•  Scaling with NoSQL and NewSQL (in two weeks)
Magda Balazinska - CSE 444, Spring 2013 3

DBMS Deployment: Local

Magda Balazinska - CSE 444, Spring 2013 4

Data files on disk

DBMS

Application

Desktop

Great for one application
(could be more) and one
user.

Magda Balazinska - CSE 444, Spring 2013

DBMS Deployment: Client/Server

Data files

connection
(ODBC, JDBC)

5 Applications

Server

Great for many apps and
many users

Magda Balazinska - CSE 444, Spring 2013

DBMS Deployment: 3 Tiers

Data files
6 Browser

DB Server

Great for web-based
applications

Web Server &
App Server

Connection
(e.g., JDBC)

HTTP/SSL

2

Magda Balazinska - CSE 444, Spring 2013

DBMS Deployment: Cloud

7 Users

Great for web-based
applications

HTTP/SSL

Developers

Data files

DB Server Web & App Server

How to Scale a DBMS?

8

Scale up

Scale out
A more

powerful server

More servers

Why Do I Care About Scaling
Transactions Per Second?

•  Amazon
•  Facebook
•  Twitter
•  … your favorite Internet application…

•  Goal is to scale OLTP workloads

•  We will get back to this next week

Magda Balazinska - CSE 444, Spring 2013 9

Why Do I Care About Scaling A
Single Query?

•  Goal is to scale OLAP workloads

•  That means the analysis of massive datasets

Magda Balazinska - CSE 444, Spring 2013 10

This Week: Focus on Scaling a
Single Query

Magda Balazinska - CSE 444, Spring 2013 11

Science is Facing a Data Deluge!

•  Astronomy: High-resolution, high-frequency sky surveys (SDSS,
LSST)

•  Medicine: ubiquitous digital records, MRI, ultrasound
•  Biology: lab automation, high-throughput sequencing
•  Oceanography: high-resolution models, cheap sensors,

satellites
•  Etc.

12

Data holds the promise to
accelerate discovery

But analyzing all this data
is a challenge

Magda Balazinska - CSE 444, Spring 2013

3

Industry is Facing a Data Deluge!

•  Clickstreams, search logs, network logs, social
networking data, RFID data, etc.

•  Examples: Facebook, Twitter, Google,
Microsoft, Amazon, Walmart, etc.

13

Data holds the promise to deliver
new and better services

But analyzing all this data
is a challenge

Magda Balazinska - CSE 444, Spring 2013

Big Data

•  Companies, organizations, scientists have data
that is too big, too fast, and too complex to
be managed without changing tools and
processes

•  Relational algebra and SQL are easy to
parallelize and parallel DBMSs have already
been studied in the 80's!

Magda Balazinska - CSE 444, Spring 2013 14

Data Analytics Companies
As a result, we are seeing an explosion of and a huge success of db
analytics companies

•  Greenplum founded in 2003 acquired by EMC in 2010; A parallel
shared-nothing DBMS (this lecture)

•  Vertica founded in 2005 and acquired by HP in 2011; A parallel,
column-store shared-nothing DBMS (see 444 for discussion of
column-stores)

•  DATAllegro founded in 2003 acquired by Microsoft in 2008; A
parallel, shared-nothing DBMS

•  Aster Data Systems founded in 2005 acquired by Teradata in
2011; A parallel, shared-nothing, MapReduce-based data
processing system (next lecture). SQL on top of MapReduce

•  Netezza founded in 2000 and acquired by IBM in 2010. A parallel,
shared-nothing DBMS.

Great time to be in the data management, data mining/statistics, or machine learning!

Magda Balazinska - CSE 444, Spring 2013 15

Two Approaches to Parallel Data
Processing

•  Parallel databases, developed starting with the
80s (this lecture)
–  For both OLTP (transaction processing)
–  And for OLAP (Decision Support Queries)

•  MapReduce, first developed by Google,
published in 2004 (next lecture)
–  Only for Decision Support Queries

Today we see convergence of the two approaches (Greenplum,Tenzing SQL)

16 Magda Balazinska - CSE 444, Spring 2013

Magda Balazinska - CSE 444, Spring 2013 17

References

•  Book Chapter 20.1

•  Database management systems.
 Ramakrishnan and Gehrke.
 Third Ed. Chapter 22.11
 (more info than our main book)

Parallel v.s. Distributed
Databases

•  Distributed database system (early next week):
–  Data is stored across several sites, each site

managed by a DBMS capable of running
independently

•  Parallel database system (today):
–  Improve performance through parallel

implementation

18 Magda Balazinska - CSE 444, Spring 2013

4

Parallel DBMSs

•  Goal
–  Improve performance by executing multiple

operations in parallel

•  Key benefit

–  Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
–  Ensure overhead and contention do not kill

performance

19 Magda Balazinska - CSE 444, Spring 2013

Performance Metrics
for Parallel DBMSs

Speedup
•  More processors è higher speed
•  Individual queries should run faster
•  Should do more transactions per second (TPS)
•  Fixed problem size overall, vary # of processors

("strong scaling”)

20 Magda Balazinska - CSE 444, Spring 2013

Linear v.s. Non-linear Speedup

processors (=P)

Speedup

21 Magda Balazinska - CSE 444, Spring 2013

Performance Metrics
for Parallel DBMSs

Scaleup
•  More processors è can process more data
•  Fixed problem size per processor, vary # of

processors ("weak scaling”)
•  Batch scaleup

–  Same query on larger input data should take the same time

•  Transaction scaleup
–  N-times as many TPS on N-times larger database
–  But each transaction typically remains small

22 Magda Balazinska - CSE 444, Spring 2013

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch
Scaleup

×1 ×5 ×10 ×15

23 Magda Balazinska - CSE 444, Spring 2013

Warning

•  Be careful. Commonly used terms today:
–  “scale up” = use an increasingly more powerful server
–  “scale out” = use a larger number of servers

24 Magda Balazinska - CSE 444, Spring 2013

5

Challenges to
Linear Speedup and Scaleup

•  Startup cost
–  Cost of starting an operation on many processors

•  Interference
–  Contention for resources between processors

•  Skew
–  Slowest processor becomes the bottleneck

25 Magda Balazinska - CSE 444, Spring 2013

Architectures for Parallel Databases

26

From: Greenplum Database Whitepaper

SAN = “Storage Area Network”
Magda Balazinska - CSE 444, Spring 2013

Shared Memory

•  Nodes share both RAM and disk
•  Dozens to hundreds of processors

Example: SQL Server runs on a single machine
and can leverage many threads to get a query to
run faster (see query plans)

•  Easy to use and program
•  But very expensive to scale

Magda Balazinska - CSE 444, Spring 2013 27

Shared Disk

•  All nodes access the same disks
•  Found in the largest "single-box" (non-cluster)

multiprocessors

Oracle dominates this class of systems

Characteristics:
•  Also hard to scale past a certain point: existing

deployments typically have fewer than 10
machines

Magda Balazinska - CSE 444, Spring 2013 28

Shared Nothing
•  Cluster of machines on high-speed network
•  Called "clusters" or "blade servers”
•  Each machine has its own memory and disk: lowest

contention.

NOTE: Because all machines today have many cores and
many disks, then shared-nothing systems typically run
many "nodes” on a single physical machine.

Characteristics:
•  Today, this is the most scalable architecture.
•  Most difficult to administer and tune.

We discuss only Shared Nothing in class 29

In Class

•  You have a parallel machine. Now what?

•  How do you speed up your DBMS?

Magda Balazinska - CSE 444, Spring 2013 30

6

• Purchase

• pid=pid

• cid=cid

• Customer

• Product
• Purchase

• pid=pid

• cid=cid

• Customer

• Product

Approaches to
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor
–  Only for OLTP queries

•  Inter-operator parallelism
–  A query runs on multiple processors
–  An operator runs on one processor
–  For both OLTP and Decision Support

•  Intra-operator parallelism
–  An operator runs on multiple processors
–  For both OLTP and Decision Support

Magda Balazinska - CSE 444, Spring 2013 We study only intra-operator parallelism: most scalable

• Purchase

• pid=pid

• cid=cid

• Customer

• Product

• Purchase

• pid=pid

• cid=cid

• Customer

• Product

• Purchase

• pid=pid

• cid=cid

• Customer

• Product

31

Horizontal Data Partitioning

•  Relation R split into P chunks R0, …, RP-1, stored at
the P nodes

•  Block partitioned
–  Each group of k tuples go to a different node

•  Hash based partitioning on attribute A:
–  Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
–  Tuple t to chunk i if vi-1 < t.A < vi

32 Magda Balazinska - CSE 444, Spring 2013

Uniform Data v.s. Skewed Data
•  Let R(K,A,B,C); which of the following partition

methods may result in skewed partitions?

•  Block partition

•  Hash-partition
–  On the key K
–  On the attribute A

•  Range-partition
–  On the key K
–  On the attribute A

Uniform

Uniform

May be skewed

Assuming uniform
hash function

E.g. when all records
have the same value
of the attribute A, then
all records end up in the
same partition

May be skewed Difficult to partition
the range of A uniformly.

Magda Balazinska - CSE 444, Spring 2013 33 34

Example from Teradata

AMP = unit of parallelism
Magda Balazinska - CSE 444, Spring 2013

Horizontal Data Partitioning

•  All three choices are just special cases:
–  For each tuple, compute bin = f(t)
–  Different properties of the function f determine hash

vs. range vs. round robin vs. anything

35 Magda Balazinska - CSE 444, Spring 2013

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ?
–  Block partitioned
–  Hash partitioned
–  Range partitioned

36 Magda Balazinska - CSE 444, Spring 2013

7

Parallel Selection

•  Q: What is the cost on a parallel database with
P nodes ?

•  A: B(R) / P in all cases if cost is response time

•  However, different processors do the work:
–  Block: all servers do the work
–  Hash: one server for σA=v(R), all for σv1<A<v2(R)
–  Range: some servers only

37 Magda Balazinska - CSE 444, Spring 2013

Data Partitioning Revisited

What are the pros and cons ?

•  Block based partitioning

–  Good load balance but always needs to read all the data
•  Hash based partitioning

–  Good load balance
–  Can avoid reading all the data for equality selections

•  Range based partitioning
–  Can suffer from skew (i.e., load imbalances)
–  Can help reduce skew by creating uneven partitions

38 Magda Balazinska - CSE 444, Spring 2013

Parallel Group By: γA, sum(B)(R)

•  Step 1: server i partitions chunk Ri using a hash
function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

•  Step 2: server i sends partition Rij to serve j

•  Step 3: server j computes γA, sum(B) on
R0j, R1j, …, RP-1,j

39 Magda Balazinska - CSE 444, Spring 2013

Parallel GroupBy

γA,sum(C)(R)
•  If R is partitioned on A, then each node

computes the group-by locally
•  Otherwise, hash-partition R(K,A,B,C) on A, then

compute group-by locally:

40

R1 R2 RP . . .

R1’ R2’ RP’ . . .

Reshuffle R
on attribute A

Parallel Group By: γA, sum(B)(R)

•  Can we do better?
•  Sum?
•  Count?
•  Avg?
•  Max?
•  Median?

41 Magda Balazinska - CSE 444, Spring 2013

Parallel Group By: γA, sum(B)(R)

•  Sum(B) = Sum(B0) + Sum(B1) + … + Sum(Bn)
•  Count(B) = Count(B0) + Count(B1) + … + Count(Bn)
•  Max(B) = Max(Max(B0), Max(B1), …, Max(Bn))

•  Avg(B) = Sum(B) / Count(B)

•  Median(B) =

42

distributive

algebraic

holistic

Magda Balazinska - CSE 444, Spring 2013

8

Parallel Join: R ⋈A=B S

•  Step 1
–  For all servers in [0,k], server i partitions chunk Ri using a

hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1
–  For all servers in [k+1,P], server j partitions chunk Sj

using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1

•  Step 2:

–  Server i sends partition Riu to server u
–  Server j sends partition Sju to server u

•  Steps 3: Server u computes the join of Riu with Sju

43 Magda Balazinska - CSE 444, Spring 2013

Overall Architecture

44
From: Greenplum Database Whitepaper

SQL Query

45

Example of Parallel Query Plan

SELECT *
 FROM Orders o, Lines i

 WHERE o.item = i.item

 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

Magda Balazinska - CSE 444, Spring 2013 46

Example Parallel Plan

Node 1 Node 2 Node 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

Node 1 Node 2 Node 3

join

select

scan

date = today()

o.item = i.item

Order o

Magda Balazinska - CSE 444, Spring 2013

47

Example Parallel Plan

Node 1 Node 2 Node 3

scan
Item i

Node 1 Node 2 Node 3

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

join

scan
date = today()

o.item = i.item

Order o
Item i

Magda Balazinska - CSE 444, Spring 2013 48

Example Parallel Plan

Node 1 Node 2 Node 3

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Magda Balazinska - CSE 444, Spring 2013

9

Optimization for Small Relations

•  When joining R and S
•  If |R| >> |S|

–  Leave R where it is
–  Replicate entire S relation across nodes

•  Sometimes called a “small join”

Magda Balazinska - CSE 444, Spring 2013 49

Other Interesting Parallel
Join Implementation

Problem of skew during join computation

–  Some join partitions get more input tuples than others
•  Reason 1: Base data unevenly distributed across machines

–  Because used a range-partition function
–  Or used hashing but some values are very popular

•  Reason 2: Selection before join with different selectivities
•  Reason 3: Input data got unevenly rehashed (or otherwise

repartitioned before the join)

–  Some partitions output more tuples than others

Magda Balazinska - CSE 444, Spring 2013 50

Some Skew Handling Techniques
1.  Use range- instead of hash-partitions

–  Ensure that each range gets same number of tuples
–  Example: {1, 1, 1, 2, 3, 4, 5, 6 } à [1,2] and [3,6]

2.  Create more partitions than nodes
–  And be smart about scheduling the partitions

3.  Use subset-replicate (i.e., “skewedJoin”)
–  Given an extremely common value ‘v’
–  Distribute R tuples with value v randomly across k

nodes (R is the build relation)
–  Replicate S tuples with value v to same k machines

(S is the probe relation)
Magda Balazinska - CSE 444, Spring 2013 51

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add a special shuffle operator
–  Handle data routing, buffering, and flow control
–  Inserted between consecutive operators in the query plan
–  Two components: ShuffleProducer and ShuffleConsumer
–  Producer pulls data from operator and sends to n

consumers
•  Producer acts as driver for operators below it in query plan

–  Consumer buffers input data from n producers and
makes it available to operator through getNext interface

52 Magda Balazinska - CSE 444, Spring 2013

Modern Shared Nothing
Parallel DBMSs

•  Greenplum founded in 2003 acquired by EMC in 2010
•  Vertica founded in 2005 and acquired by HP in 2011
•  DATAllegro founded in 2003 acquired by Microsoft in

2008
•  Netezza founded in 2000 and acquired by IBM in 2010
•  Aster Data Systems founded in 2005 acquired by

Teradata in 2011
–  MapReduce-based data processing system (next week)

Magda Balazinska - CSE 444, Spring 2013 53

