
1

CSE 444: Database Internals

Lectures 17-18
Transactions: Aries

1 Magda Balazinska - CSE 444, Spring 2013

Readings

•  Material in today’s lecture NOT in the book

•  Instead, read Sections 1, 2.2, and 3.2 of:
Michael J. Franklin. Concurrency Control and
Recovery. The Handbook of Computer Science
and Engineering, A. Tucker, ed., CRC Press,
Boca Raton, 1997.
–  Posted on course website (below the calendar)
–  Other sections are also worth reading

Magda Balazinska - CSE 444, Spring 2013 2

Magda Balazinska - CSE 444, Spring 2013 3

Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE
•  Highest performance: STEAL/NO-FORCE

Comparison Undo/Redo

•  Undo logging:
–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its

data to disk (hence, don’t need to redo) – inefficient
•  Redo logging

–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not

written any of its data to disk (hence there is not dirty
data on disk, no need to undo) – inflexible

•  Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Magda Balazinska - CSE 444, Spring 2013

Steal/Force

No-Steal/No-Force

Steal/No-Force

4

Aries Recovery Algorithm

•  An UNDO/REDO log with lots of clever details

5 Magda Balazinska - CSE 444, Spring 2013 6

Write-Ahead Log

•  Enables the use of STEAL and NO-FORCE
•  Log: append-only file containing log records
•  For every update, commit, or abort operation

–  Write physiological log record (more later)
–  Note: multiple transactions run concurrently, log

records are interleaved

•  After a system crash, use log to:
–  Redo some transaction that did commit
–  Undo other transactions that didn’t commit

Magda Balazinska - CSE 444, Spring 2013

2

7

Write-Ahead Log

•  All log records pertaining to a page are written
to disk before the page is overwritten on disk

•  All log records for transaction are written to disk
before the transaction is considered committed
–  Why is this faster than FORCE policy?

•  Committed transaction: transactions whose
commit log record has been written to disk

Magda Balazinska - CSE 444, Spring 2013

Log Granularity

Two basic types of log records for update operations
•  Physical log records

–  Position on a particular page where update occurred
–  Both before and after image for undo/redo logs
–  Benefits: Idempotent & updates are fast to redo/undo

•  Logical log records
–  Record only high-level information about the operation
–  Benefit: Smaller log
–  BUT difficult to implement because crashes can occur in

the middle of an operation

Magda Balazinska - CSE 444, Spring 2013 8

Granularity in ARIES

•  Physiological logging
–  Log records refer to a single page
–  But record logical operation within the page

•  Page-oriented logging for REDO
–  Necessary since can crash in middle of complex op.

•  Logical logging for UNDO
–  Enables tuple-level locking!
–  Must do logical undo because ARIES will only undo

loser transactions (this also facilitates ROLLBACKs)

Magda Balazinska - CSE 444, Spring 2013 9 10

ARIES Method

Recovery from a system crash is done in 3 passes:
1.  Analysis pass

–  Figure out what was going on at time of crash
–  List of dirty pages and active transactions

2.  Redo pass (repeating history principle)
–  Redo all operations, even for transactions that will not commit
–  Get back to state at the moment of the crash

3.  Undo pass
–  Remove effects of all uncommitted transactions
–  Log changes during undo in case of another crash during undo

Magda Balazinska - CSE 444, Spring 2013

11

ARIES Method Illustration

[Franklin97]

May be in
reverse order

Magda Balazinska - CSE 444, Spring 2013 12

ARIES Data Structures
•  Active Transactions Table

–  Lists all running transactions (active transactions)
–  For each txn: lastLSN = most recent update by

transaction
•  Dirty Page Table

–  Lists all dirty pages
–  For each dirty page: recoveryLSN (recLSN)= first

LSN that caused page to become dirty
•  Write Ahead Log contains log records

–  LSN, prevLSN = previous LSN for same transaction
–  other attributes

Magda Balazinska - CSE 444, Spring 2013

3

ARIES Data Structures

pageID recLSN
P5 102
P6 103
P7 101

LSN prevLSN transID pageID Log entry
101 - T100 P7
102 - T200 P5
103 102 T200 P6
104 101 T100 P5

Dirty pages Log

transID lastLSN
T100 104
T200 103

Active transactions

P5
PageLSN=104

P6
PageLSN=103

P7
PageLSN=101

Buffer Pool

13

The LSN

•  Each log entry receives a unique Log Sequence
Number, LSN
–  The LSN is written in the log entry
–  Entries belonging to the same transaction are

chained in the log via prevLSN
–  LSN’s help us find the end of a circular log file:

14

After crash, log file = (22, 23, 24, 25, 26, 18, 19, 20, 21)
Where is the end of the log ? 18

Magda Balazinska - CSE 444, Spring 2013

15

ARIES Method Details

•  Steps under normal operations
–  Add log record
–  Update transactions table
–  Update dirty page table
–  Update pageLSN

Magda Balazinska - CSE 444, Spring 2013

ARIES Method

•  More details and long example on the board

•  Please TAKE NOTES!

Magda Balazinska - CSE 444, Spring 2013 16

17

Checkpoints

•  Write into the log
–  Entire active transactions table
–  Entire dirty page table

•  Very fast ! No waiting, no END CKPT

•  But, effectiveness is limited by dirty pages

–  Solution: A background process periodically sends
dirty pages to disk

Magda Balazinska - CSE 444, Spring 2013 18

1. Analysis Phase

•  Goal
–  Determine point in log where to start REDO
–  Determine set of dirty pages when crashed

•  Conservative estimate of dirty pages
–  Identify active transactions when crashed

•  Approach
–  Rebuild active transactions table and dirty pages table
–  Reprocess the log from the beginning (or checkpoint)

•  Only update the two data structures
–  Compute: firstLSN = smallest of all recoveryLSN

Magda Balazinska - CSE 444, Spring 2013

4

1. Analysis Phase

Magda Balazinska - CSE 444, Spring 2013 19

(crash) Checkpoint

Dirty pages

Active
transactions

Log

Replay
history

firstLSN

2. Redo Phase

Main principle: replay history
•  Process Log forward, starting from firstLSN
•  Read every log record, sequentially
•  Redo actions are not recorded in the log
•  Needs the Dirty Page Table

Magda Balazinska - CSE 444, Spring 2013 20

21

2. Redo Phase: Details

For each Log entry record LSN
•  If affected page is not in Dirty Page Table then

do not update
•  If recoveryLSN > LSN, then no update
•  Read page from disk;

If pageLSN >= LSN, then no update
•  Otherwise perform update

Magda Balazinska - CSE 444, Spring 2013

3. Undo Phase

Main principle: “logical” undo
•  Start from the end of the log, move backwards
•  Read only affected log entries
•  Undo actions are written in the Log as special

entries: CLR (Compensating Log Records)
•  CLRs are redone, but never undone

Magda Balazinska - CSE 444, Spring 2013 22

3. Undo Phase: Details

•  “Loser transactions” = uncommitted transactions in
Active Transactions Table

•  ToUndo = set of lastLSN of loser transactions
•  While ToUndo not empty:

–  Choose most recent (largest) LSN in ToUndo
–  If LSN = regular record: undo; write a CLR where

CLR.undoNextLSN = LSN.prevLSN; if LSN.prevLSN not null,
insert in ToUndo otherwise, write <END TRANSACTION> in log

–  If LSN = CLR record: (don’t undo !)
if CLR.undoNextLSN not null, insert in ToUndo
otherwise, write <END TRANSACTION> in log

Magda Balazinska - CSE 444, Spring 2013 23 24

Handling Crashes during Undo

[Figure 4 from Franklin97]

Magda Balazinska - CSE 444, Spring 2013

