
1

CSE 444: Database Internals

Lectures 16
Transactions: Recovery

1 Magda Balazinska - CSE 444, Spring 2013

Transaction Management

Two parts:
•  Concurrency control: ACID
•  Recovery from crashes: ACID

We already discussed concurrency control
 You are implementing locking in lab3

Today, we start recovery

 More details in the book in Chapter 17
Magda Balazinska - CSE 444, Spring 2013 2

Magda Balazinska - CSE 444, Spring 2013 3

Problem Illustration
Client 1:

 START TRANSACTION
 INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99
 COMMIT

What do we do now?

Crash !

Recovery

From which events below can DBMS recover ?
•  Wrong data entry
•  Disk failure
•  Fire / earthquake / etc.
•  Systems crashes

–  Software errors
–  Power failures

Magda Balazinska - CSE 444, Spring 2013 4

Recovery

Type of Crash Prevention

Wrong data entry Constraints and
Data cleaning

Disk crashes Redundancy:
RAID, backup, replica

Fire or other major
disaster

Redundancy:
 Replica far away

System failures DATABASE
RECOVERY

Most
frequent

5 Magda Balazinska - CSE 444, Spring 2013

System Failures

•  Each transaction has internal state

•  When system crashes, internal state is lost
–  Don’t know which parts executed and which didn’t
–  Need ability to undo and redo

Magda Balazinska - CSE 444, Spring 2013 6

2

Buffer Manager Review

Disk

Main
memory

Page requests from higher-level code

Buffer pool

Disk page

Free frame

1 page corresponds
to 1 disk block

Disk = collection
of blocks

Buffer pool manager
Files and access methods

7

READ
WRITE

INPUT
OUTPUT

choice of frame dictated
by replacement policy

Data must be in RAM for DBMS to operate on it!
Buffer pool = table of <frame#, pageid> pairs

Buffer Manager Review

•  Enables higher layers of the DBMS to assume
that needed data is in main memory

•  Caches data in memory. When crash occurs:
–  Problem if committed data was not yet written to disk
–  Problem if uncommitted data was flushed to disk

Magda Balazinska - CSE 444, Spring 2013 8

Buffer Manager

•  DBMSs build their own buffer manager and
don’t rely on the OS. Why?

•  Reason 1: Performance
–  DBMS may be able to anticipate access patterns
–  Hence, may also be able to perform prefetching
–  May select better page replacement policy

•  Reason 2: Correctness
–  DBMS needs fine grained control for transactions
–  Needs to force pages to disk for recovery purposes

Magda Balazinska - CSE 444, Spring 2013 9

Transactions

•  Assumption: db composed of elements
–  Usually 1 element = 1 block
–  Can be smaller (=1 record) or larger (=1 relation)

•  Assumption: each transaction reads/writes
some elements

Magda Balazinska - CSE 444, Spring 2013 10

Primitive Operations of
Transactions

•  READ(X,t)
–  copy element X to transaction local variable t

•  WRITE(X,t)
–  copy transaction local variable t to element X

•  INPUT(X)
–  read element X to memory buffer

•  OUTPUT(X)
–  write element X to disk

Magda Balazinska - CSE 444, Spring 2013 11

Example

START TRANSACTION
READ(A,t);
t := t*2;
WRITE(A,t);
READ(B,t);
t := t*2;
WRITE(B,t);
COMMIT;

Atomicity:
BOTH A and B
are multiplied by 2

12 Magda Balazinska - CSE 444, Spring 2013

3

Magda Balazinska - CSE 444, Spring 2013 13

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 14

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t)

t:=t*2

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 15

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t)

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 16

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B)

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 17

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t)

t:=t*2

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 18

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t)

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

4

Magda Balazinska - CSE 444, Spring 2013 19

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A)

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 20

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B)

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Magda Balazinska - CSE 444, Spring 2013 21

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Buffer pool Disk Transaction

READ(A,t); t := t*2; WRITE(A,t);
READ(B,t); t := t*2; WRITE(B,t);

Action t Mem A Mem B Disk A Disk B

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16
Crash !

Crash occurs after OUTPUT(A), before OUTPUT(B)
We lose atomicity 22

Magda Balazinska - CSE 444, Spring 2013 23

Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE
•  Highest performance: STEAL/NO-FORCE

Solution: Use a Log

•  Log = append-only file containing log records
•  Note: multiple transactions run concurrently, log

records are interleaved
•  After a system crash, use log to:

–  Redo some transactions that did commit
–  Undo other transactions that did not commit

•  Three kinds of logs: undo, redo, undo/redo

Magda Balazinska - CSE 444, Spring 2013 24

5

Undo Logging

Log records
•  <START T>

–  Transaction T has begun
•  <COMMIT T>

–  T has committed
•  <ABORT T>

–  T has aborted
•  <T,X,v> -- Update record

–  T has updated element X, and its old value was v

Magda Balazinska - CSE 444, Spring 2013 25

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
26

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !

WHAT DO WE DO ? 27

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>

Crash !
WHAT DO WE DO ? 28

After Crash

•  In the first example:
–  We UNDO both changes: A=8, B=8
–  The transaction is atomic, since none of its actions have been

executed

•  In the second example
–  We don’t undo anything
–  The transaction is atomic, since both it’s actions have been

executed

Magda Balazinska - CSE 444, Spring 2013 29

Undo-Logging Rules

U1: If T modifies X, then <T,X,v> must be written
to disk before OUTPUT(X)

U2: If T commits, then OUTPUT(X) must be

written to disk before <COMMIT T>

•  Hence: OUTPUTs are done early, before the

transaction commits

Magda Balazinska - CSE 444, Spring 2013 30

6

Action T Mem A Mem B Disk A Disk B Log

<START T>

INPUT(A) 8 8 8

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8>

INPUT(B) 16 16 8 8 8

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

COMMIT <COMMIT T>
31

Recovery with Undo Log

After system’s crash, run recovery manager

•  Idea 1. Decide for each transaction T whether it
is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Idea 2. Undo all modifications by incomplete
transactions

Magda Balazinska - CSE 444, Spring 2013 32

Recovery with Undo Log

Recovery manager:
•  Read log from the end; cases:

<COMMIT T>: mark T as completed
<ABORT T>: mark T as completed
<T,X,v>: if T is not completed
 then write X=v to disk
 else ignore
<START T>: ignore

Magda Balazinska - CSE 444, Spring 2013 33

Recovery with Undo Log

…
…
<T6,X6,v6>
…
…
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

Question1 in class:
Which updates are
undone ?

Question 2 in class:
What happens if there
is a second crash,
during recovery ?

Question 3 in class:
How far back
do we need to
read in the log ?

crash 34

Recovery with Undo Log

•  Note: all undo commands are idempotent
–  If we perform them a second time, no harm done
–  E.g. if there is a system crash during recovery,

simply restart recovery from scratch

Magda Balazinska - CSE 444, Spring 2013 35

Recovery with Undo Log

When do we stop reading the log ?
•  We cannot stop until we reach the beginning of

the log file
•  This is impractical

Instead: use checkpointing

Magda Balazinska - CSE 444, Spring 2013 36

7

Checkpointing

Checkpoint the database periodically
•  Stop accepting new transactions
•  Wait until all current transactions complete
•  Flush log to disk
•  Write a <CKPT> log record, flush
•  Resume transactions

Magda Balazinska - CSE 444, Spring 2013 37

Undo Recovery with Checkpointing

…
…
<T9,X9,v9>
…
…
(all completed)
<CKPT>
<START T2>
<START T3
<START T5>
<START T4>
<T1,X1,v1>
<T5,X5,v5>
<T4,X4,v4>
<COMMIT T5>
<T3,X3,v3>
<T2,X2,v2>

During recovery,
Can stop at first
<CKPT>

 transactions T2,T3,T4,T5

 other transactions

38

Nonquiescent Checkpointing

•  Problem with checkpointing: database freezes
during checkpoint

•  Would like to checkpoint while database is
operational

•  Idea: nonquiescent checkpointing

Quiescent = being quiet, still, or at rest; inactive
Non-quiescent = allowing transactions to be active

Magda Balazinska - CSE 444, Spring 2013 39

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions.
Flush log to disk

•  Continue normal operation

•  When all of T1,…,Tk have completed, write
<END CKPT>. Flush log to disk

Magda Balazinska - CSE 444, Spring 2013 40

Undo Recovery with Nonquiescent
Checkpointing

…
…
…
…
…
…
<START CKPT T4, T5, T6>
…
…
…
<END CKPT>
…
…
…

During recovery,
Can stop at first
<CKPT>

 T4, T5, T6, plus
 later transactions

 earlier transactions plus
 T4, T5, T6

 later transactions
Q: why do we need
<END CKPT> ? 41

Implementing ROLLBACK

•  Recall: a transaction can end in COMMIT or
ROLLBACK

•  Idea: use the undo-log to implement ROLLBACK
•  How ?

–  LSN = Log Sequence Number
–  Log entries for the same transaction are linked, using

the LSN’s
–  Read log in reverse, using LSN pointers

Magda Balazinska - CSE 444, Spring 2013 42

8

Redo Logging

Log records
•  <START T> = transaction T has begun
•  <COMMIT T> = T has committed
•  <ABORT T>= T has aborted
•  <T,X,v>= T has updated element X, and its new

value is v

Magda Balazinska - CSE 444, Spring 2013 43

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Magda Balazinska - CSE 444, Spring 2013 44

Redo-Logging Rules

R1: If T modifies X, then both <T,X,v> and
<COMMIT T> must be written to disk before
OUTPUT(X)

•  Hence: OUTPUTs are done late

Magda Balazinska - CSE 444, Spring 2013 45

Action T Mem A Mem B Disk A Disk B Log

<START T>

READ(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,16>

<COMMIT T>

OUTPUT(A) 16 16 16 16 8

OUTPUT(B) 16 16 16 16 16

Magda Balazinska - CSE 444, Spring 2013 46

Recovery with Redo Log

After system’s crash, run recovery manager
•  Step 1. Decide for each transaction T whether it

is completed or not
–  <START T>….<COMMIT T>…. = yes
–  <START T>….<ABORT T>……. = yes
–  <START T>……………………… = no

•  Step 2. Read log from the beginning, redo all
updates of committed transactions

Magda Balazinska - CSE 444, Spring 2013 47

Recovery with Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
… 48

9

Nonquiescent Checkpointing

•  Write a <START CKPT(T1,…,Tk)>
where T1,…,Tk are all active transactions

•  Flush to disk all blocks of committed
transactions (dirty blocks), while continuing
normal operation

•  When all blocks have been written, write <END
CKPT>

Magda Balazinska - CSE 444, Spring 2013 49

Redo Recovery with Nonquiescent
Checkpointing

…
<START T1>
…
<COMMIT T1>
…
<START T4>
…
<START CKPT T4, T5, T6>
…
…
…
…
<END CKPT>
…
…
…
<START CKPT T9, T10>
…

Step 1: look for
The last
<END CKPT>

Step 2: redo
from the
earliest
start of
T4, T5, T6
ignoring
transactions
committed
earlier

All OUTPUTs
of T1 are
known to be on disk

Cannot
use 50

Comparison Undo/Redo

•  Undo logging:
–  OUTPUT must be done early
–  If <COMMIT T> is seen, T definitely has written all its

data to disk (hence, don’t need to redo) – inefficient
•  Redo logging

–  OUTPUT must be done late
–  If <COMMIT T> is not seen, T definitely has not

written any of its data to disk (hence there is not dirty
data on disk, no need to undo) – inflexible

•  Would like more flexibility on when to OUTPUT:
undo/redo logging (next)

Magda Balazinska - CSE 444, Spring 2013

Steal/Force

No-Steal/No-Force

Steal/No-Force

51

Undo/Redo Logging

Log records, only one change
•  <T,X,u,v>= T has updated element X, its old

value was u, and its new value is v

Magda Balazinska - CSE 444, Spring 2013 52

Undo/Redo-Logging Rule

UR1: If T modifies X, then <T,X,u,v> must be
written to disk before OUTPUT(X)

Note: we are free to OUTPUT early or late relative

to <COMMIT T>

Magda Balazinska - CSE 444, Spring 2013 53

Action T Mem A Mem B Disk A Disk B Log

<START T>

REAT(A,t) 8 8 8 8

t:=t*2 16 8 8 8

WRITE(A,t) 16 16 8 8 <T,A,8,16>

READ(B,t) 8 16 8 8 8

t:=t*2 16 16 8 8 8

WRITE(B,t) 16 16 16 8 8 <T,B,8,16>

OUTPUT(A) 16 16 16 16 8

<COMMIT T>

OUTPUT(B) 16 16 16 16 16

Can OUTPUT whenever we want: before/after COMMIT 54

10

Recovery with Undo/Redo Log

After system’s crash, run recovery manager
•  Redo all committed transaction, top-down
•  Undo all uncommitted transactions, bottom-up

Magda Balazinska - CSE 444, Spring 2013 55

Recovery with Undo/Redo Log

<START T1>
<T1,X1,v1>
<START T2>
<T2, X2, v2>
<START T3>
<T1,X3,v3>
<COMMIT T2>
<T3,X4,v4>
<T1,X5,v5>
…
…

Magda Balazinska - CSE 444, Spring 2013 56

