
1

CSE 444: Database Internals

Lectures 15
Transactions: Snapshot Isolation

1 Magda Balazinska - CSE 444, Spring 2013

Where We Are

•  ACID properties of transactions
•  Concept of serializability
•  How to provide serializability with locking
•  Lowers level of isolation with locking
•  How to provide serializability with optimistic cc

–  Timestamps/Multiversion or Validation

•  Today: lower level of isolation with multiversion cc
–  Snapshot isolation

Magda Balazinska - CSE 444, Spring 2013 2

Snapshot Isolation

•  Not described in the book, but good overview in
Wikipedia

3 Magda Balazinska - CSE 444, Spring 2013

Snapshot Isolation

•  A type of multiversion concurrency control algorithm
•  Provides yet another level of isolation

•  Very efficient, and very popular
–  Oracle, PostgreSQL, SQL Server 2005

•  Prevents many classical anomalies BUT…
•  Not serializable (!), yet ORACLE and PostgreSQL use it

even for SERIALIZABLE transactions!
–  But “serializable snapshot isolation” now in PostgreSQL

4 Magda Balazinska - CSE 444, Spring 2013

Snapshot Isolation Rules

•  Each transactions receives a timestamp TS(T)

•  Transaction T sees snapshot at time TS(T) of the database

•  When T commits, updated pages are written to disk

•  Write/write conflicts resolved by “first committer wins” rule
–  Loser gets aborted

•  Read/write conflicts are ignored

5 Magda Balazinska - CSE 444, Spring 2013

Snapshot Isolation (Details)

•  Multiversion concurrency control:
–  Versions of X: Xt1, Xt2, Xt3, . . .

•  When T reads X, return XTS(T).

•  When T writes X: if other transaction updated X, abort
–  Not faithful to “first committer” rule, because the other

transaction U might have committed after T. But once we abort
T, U becomes the first committer J

6 Magda Balazinska - CSE 444, Spring 2013

2

What Works and What Not

•  No dirty reads (Why ?)
•  No inconsistent reads (Why ?)

–  A: Each transaction reads a consistent snapshot

•  No lost updates (“first committer wins”)

•  Moreover: no reads are ever delayed

•  However: read-write conflicts not caught !

7 Magda Balazinska - CSE 444, Spring 2013

Write Skew

8

T1:
 READ(X);
 if X >= 50
 then Y = -50; WRITE(Y)
 COMMIT

T2:
 READ(Y);
 if Y >= 50
 then X = -50; WRITE(X)
 COMMIT

In our notation:

R1(X), R2(Y), W1(Y), W2(X), C1,C2

Starting with X=50,Y=50, we end with X=-50, Y=-50.
Non-serializable !!!

Magda Balazinska - CSE 444, Spring 2013

Write Skews Can Be Serious

•  Acidicland had two viceroys, Delta and Rho
•  Budget had two registers: taXes, and spendYng
•  They had high taxes and low spending…

9

Delta:
 READ(taXes);
 if taXes = ‘High’
 then { spendYng = ‘Raise’;
 WRITE(spendYng) }
 COMMIT

Rho:
 READ(spendYng);
 if spendYng = ‘Low’
 then {taXes = ‘Cut’;
 WRITE(taXes) }
 COMMIT

… and they ran a deficit ever since.

Questions/Discussions

•  How does snapshot isolation (SI) compare to
repeatable reads and serializable?
–  A: SI avoids most but not all phantoms (e.g., write skew)

•  Note: Oracle & PostgreSQL implement it even for
isolation level SERIALIZABLE
–  But most recently: “serializable snapshot isolation”

•  How can we enforce serializability at the app level ?
–  A: Use dummy writes for all reads to create write-write

conflicts… but that is confusing for developers!!!

10 Magda Balazinska - CSE 444, Spring 2013

11

Commercial Systems

Always check documentation as DBMSs keep
evolving and thus changing! Just to get an idea:
•  DB2: Strict 2PL
•  SQL Server:

–  Strict 2PL for standard 4 levels of isolation
–  Multiversion concurrency control for snapshot isolation

•  PostgreSQL: Multiversion concurrency control
•  Oracle: Multiversion concurrency control

Magda Balazinska - CSE 444, Spring 2013

Important Lesson

•  ACID transactions/serializability make it easy to
develop applications

•  BUT they add overhead and slow things down

•  Lower levels of isolation reduce overhead
•  BUT they are hard to reason about for

developers!

Magda Balazinska - CSE 444, Spring 2013 12

