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CSE 444: Database Internals 

Lectures 13 
Transactions: Overview +  

Concurrency Control using Locking 

1 Magda Balazinska - CSE 444, Spring 2013 

Announcements 

•  Lab 2 is due TODAY 
–  But contest continues until end of quarter 
–  Lab 3 will be released today, part 1 due next Monday 

•  HW4 is due on Wednesday 
–  HW3 will be released on Thursday, due next week 

•  544M: Paper 3 reading is due TODAY 
–  Papers 4 and 5 are due on same day in a few weeks 
–  Write-up should be 2 to 3 pages long since 2 papers 
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Terminology Needed For Lab 3 
Buffer Manager Policies 

•  STEAL or NO-STEAL 
–  Can an update made by an uncommitted transaction overwrite 

the most recent committed value of a data item on disk? 

•  FORCE or NO-FORCE 
–  Should all updates of a transaction be forced to disk before the 

transaction commits? 

•  Easiest for recovery: NO-STEAL/FORCE (lab 3) 
•  Highest performance: STEAL/NO-FORCE (lab 5) 
•  We will get back to this next week 
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Outline 

•  Transactions motivation, definition, properties 
–  344 review 

•  Concurrency control and locking 
–  Also 344 review 
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Motivating Example  

UPDATE Budget 
SET money=money-100 
WHERE pid = 1 
 
UPDATE Budget 
SET money=money+60 
WHERE pid = 2 
 
UPDATE Budget 
SET money=money+40 
WHERE pid = 3 

SELECT sum(money) 
FROM Budget 

Would like to treat 
each group of 

instructions as a unit 
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Definition 

•  A transaction = one or more operations, single 
real-world transition 

•  Examples  
–  Transfer money between accounts 
–  Purchase a group of products 
–  Register for a class (either waitlist or allocated) 

Magda Balazinska - CSE 444, Spring 2013 8 

Transactions 

•  Major component of database systems 
•  Critical for most applications; arguably more so 

than SQL 

•  Turing awards to database researchers: 
–  Charles Bachman 1973 
–  Edgar Codd 1981 for inventing relational dbs 
–  Jim Gray 1998 for inventing transactions 
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Transaction Example 
START TRANSACTION!

UPDATE Budget SET money = money - 100 !

WHERE pid = 1!

UPDATE Budget SET money = money + 60 !

WHERE pid = 2!

UPDATE Budget SET money = money + 40 !

WHERE pid = 3!

COMMIT  (or ROLLBACK)!
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ROLLBACK 

•  If the app gets to a place where it can’t 
complete the transaction successfully, it can 
execute ROLLBACK 

•  This causes the system to “abort” the 
transaction 
–  Database returns to a state without any of the 

changes made by the transaction 
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Reasons for Rollback 

•  User changes their mind (“ctl-C”/cancel) 

•  Explicit in program, when app program finds a 
problem  
–  e.g. when qty on hand < qty being sold 

•  System-initiated abort 
–  System crash 
–  Housekeeping 

•  e.g. due to timeouts 
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ACID Properties 

•  Atomicity: Either all changes performed by 
transaction occur or none occurs 

•  Consistency: A transaction as a whole does not 
violate integrity constraints 

•  Isolation: Transactions appear to execute one 
after the other in sequence 

•  Durability: If a transaction commits, its changes 
will survive failures 
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What Could Go Wrong? 

•  Why is it hard to provide ACID properties? 

•  Concurrent operations 
–  Isolation problems 
–  We saw one example earlier 

•  Failures can occur at any time 
–  Atomicity and durability problems 
–  Later lectures 

•  Transaction may need to abort 
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Different Types of Problems 
Client 1: INSERT INTO SmallProduct(name, price) 

  SELECT pname, price 
  FROM Product 
  WHERE price <= 0.99 

 
  DELETE Product 
  WHERE price <=0.99 

 
Client 2: SELECT count(*) 

  FROM Product 
 

  SELECT count(*) 
  FROM SmallProduct 

What could go wrong ? Inconsistent reads 
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Different Types of Problems 

Client 1: 
 UPDATE Product 
 SET Price = Price – 1.99 
 WHERE pname = ‘Gizmo’ 

 
Client 2: 

 UPDATE Product 
 SET Price = Price*0.5 
 WHERE pname=‘Gizmo’ 

Lost update What could go wrong ? 
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Different Types of Problems 

Client 1:  UPDATE SET Account.amount = 1000000000 
   WHERE Account.number = ‘my-account’ 

 
 
 
Client 2:  SELECT Account.amount 

   FROM Account 
   WHERE Account.number = ‘my-account’ 

What could go wrong ? Dirty reads 

Aborted by 
system 
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Types of Problems: Summary 

•  Concurrent execution problems 
–  Write-read conflict: dirty read (includes inconsistent read) 

•  A transaction reads a value written by another transaction that 
has not yet committed 

–  Read-write conflict: unrepeatable read 
•  A transaction reads the value of the same object twice. Another 

transaction modifies that value in between the two reads 
–  Write-write conflict: lost update 

•  Two transactions update the value of the same object. The 
second one to write the value overwrite the first change 

•  Failure problems 
–  DBMS can crash in the middle of a series of updates 
–  Can leave the database in an inconsistent state 
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Outline 

•  Transactions motivation, definition, properties 

•  Concurrency control and locking 
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Schedules 

•  Given multiple transactions 
•  A schedule is a sequence of interleaved actions 

from all transactions 
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Example 

T1 T2 
READ(A, t) READ(A, s) 
t := t+100 s := s*2 
WRITE(A, t) WRITE(A,s) 
READ(B, t) READ(B,s) 
t := t+100 s := s*2 
WRITE(B,t) WRITE(B,s) 
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A Serial Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 
READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 
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Serializable Schedule 

•  A schedule is serializable if it is equivalent to a 
serial schedule 
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A Serializable Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 

READ(B,s) 
s := s*2 
WRITE(B,s) 

Notice:  
This is NOT a serial schedule 
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A Non-Serializable Schedule 

T1 T2 
READ(A, t) 
t := t+100 
WRITE(A, t) 

READ(A,s) 
s := s*2 
WRITE(A,s) 
READ(B,s) 
s := s*2 
WRITE(B,s) 

READ(B, t) 
t := t+100 
WRITE(B,t) 
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Ignoring Details 

•  Sometimes transactions’ actions can commute 
accidentally because of specific updates 
–  Serializability is undecidable ! 

•  Scheduler should not look at transaction details 

•  Assume worst case updates 
–  Only care about reads r(A) and writes w(A) 
–  Not the actual values involved 
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Notation 

T1: r1(A); w1(A); r1(B); w1(B) 
T2: r2(A); w2(A); r2(B); w2(B) 
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Conflict Serializability 

Conflicts: 
ri(X); wi(Y) Two actions by same transaction Ti: 

wi(X); wj(X) Two writes by Ti, Tj to same element 

wi(X); rj(X) 
Read/write by Ti, Tj to same element 

ri(X); wj(X) 
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Conflict Serializability 

•  A schedule is conflict serializable if it can be 
transformed into a serial schedule by a series 
of swappings of adjacent non-conflicting 
actions 

Example: 

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B) 

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B) 
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The Precedence Graph Test 

Is a schedule conflict-serializable ? 
Simple test: 
•  Build a graph of all transactions Ti 

•  Edge from Ti to Tj if Ti makes an action that 
conflicts with one of Tj and comes first 

•  The test: if the graph has no cycles, then it is 
conflict serializable ! 
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Example 1 

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B) 

1 2 3 

This schedule is conflict-serializable 

A B 
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Example 2 

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B) 

1 2 3 

This schedule is NOT conflict-serializable 

A 
B 

B 
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Conflict Serializability 

•  A serializable schedule need not be conflict 
serializable, even under the “worst case 
update” assumption 

w1(Y); w1(X); w2(Y); w2(X); w3(X); 

w1(Y); w2(Y); w2(X); w1(X); w3(X); 

Lost write 

Equivalent,  but can’t swap 
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Scheduler 

•  The scheduler is the module that schedules the 
transaction’s actions, ensuring serializability 

•  How ?  We discuss three techniques in class: 
–  Locks 
–  Timestamps (next lecture) 
–  Validation (next lecture) 
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Locking Scheduler 

Simple idea: 
•  Each element has a unique lock 
•  Each transaction must first acquire the lock 

before reading/writing that element 
•  If lock is taken by another transaction, then wait 
•  The transaction must release the lock(s) 
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Notation 

li(A) = transaction Ti acquires lock for element A 
 
ui(A) = transaction Ti releases lock for element A 
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Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); L1(B) 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(B);  

Scheduler has ensured a conflict-serializable schedule 36 
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Example 
T1 T2 
L1(A); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A); 

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s); U2(A); 
L2(B); READ(B,s) 
s := s*2 
WRITE(B,s); U2(B); 

L1(B); READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

Locks did not enforce conflict-serializability !!! 37 

Two Phase Locking (2PL) 

The 2PL rule: 

•  In every transaction, all lock requests must 
preceed all unlock requests 

•  This ensures conflict serializability !  (why?) 
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Example: 2PL transactions 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Now it is conflict-serializable 39 

Example with Multiple 
Transactions 

Equivalent to each transaction executing entirely 
the moment it enters shrinking phase 
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T1 T2 T3 T4 

Growing 
phase 

Shrinking 
phase 

Unlocks first 
Was not waiting 
for anyone 

Unlocks second so 
perhaps was waiting 
for T3 

What about Aborts? 

•  2PL enforces conflict-serializable schedules 

•  But what if a transaction releases its locks and 
then aborts? 
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Example with Abort 
T1 T2 
L1(A); L1(B); READ(A, t) 
t := t+100 
WRITE(A, t); U1(A)  

L2(A); READ(A,s) 
s := s*2 
WRITE(A,s);  
L2(B); DENIED… 

READ(B, t) 
t := t+100 
WRITE(B,t); U1(B);  

…GRANTED; READ(B,s) 
s := s*2 
WRITE(B,s); U2(A); U2(B);  

Abort Commit 42 
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Strict 2PL 

•  Strict 2PL: All locks held by a transaction are 
released when the transaction is completed 
–  Also called “long-duration locks” 

 
•  Ensures that schedules are recoverable 

–  Transactions commit only after all transactions 
whose changes they read also commit 

•  Avoids cascading rollbacks 
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Deadlock 

•  Transaction T1 waits for a lock held by T2; 
•  But T2 waits for a lock held by T3; 
•  While T3 waits for . . . . 
•  . . . 
•  . . .and T73 waits for a lock held by T1  !! 

•  A deadlock is when two or more transactions 
are waiting for each other to complete 
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Handling Deadlock 

•  Deadlock avoidance 
–  Acquire locks in pre-defined order 
–  Acquire all locks at once before starting 

•  Deadlock detection 
–  Timeouts (but hard to pick the right threshold) 
–  Wait-for graph 

•  What commercial systems use (they check graph periodically) 
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Lock Modes 

•  S = shared lock (for READ) 
•  X = exclusive lock (for WRITE) 

•  U = update lock 
–  Initially like S 
–  Later may be upgraded to X 

•  I = increment lock (for A := A + something) 
–  Increment operations commute 

Recommended reading: chapter 18.4 
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Lock Granularity 

•  Fine granularity locking (e.g., tuples) 
–  High concurrency 
–  High overhead in managing locks 

•  Coarse grain locking (e.g., tables) 
–  Many false conflicts 
–  Less overhead in managing locks 

•  Alternative techniques 
–  Hierarchical locking (and intentional locks) 

[commercial DBMSs] 
–  Lock escalation Recommended reading: chapter 18.6 
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Phantom Problem 

•  A “phantom” is a tuple that is invisible during part 
of a transaction execution but not all of it. 

•  Example: 
–  T0: reads list of books in catalog 
–  T1: inserts a new book into the catalog 
–  T2: reads list of books in catalog: New book appears! 

•  Can this occur? 
•  Depends on locking details 

–  eg, granularity of locks 
•  To avoid phantoms needs predicate locking 
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The Locking Scheduler 

Task 1: 
Add lock/unlock requests to transactions 

•  Examine all READ(A) or WRITE(A) actions 
•  Add appropriate lock requests 
•  Ensure 2PL ! 

Recommended reading: chapter 18.5 
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The Locking Scheduler 

Task 2:  
Execute the locks accordingly 

•  Lock table: a big, critical data structure in a DBMS ! 
•  When a lock is requested, check the lock table 

–  Grant, or add the transaction to the element’s wait list 

•  When a lock is released, re-activate a transaction from 
its wait list 

•  When a transaction aborts, release all its locks 
•  Check for deadlocks occasionally 

Recommended reading: chapter 18.5 
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Degrees of Isolation 

•  Isolation level “serializable” (i.e. ACID) 
–  Golden standard 
–  Requires strict 2PL and predicate locking 
–  But often too inefficient 
–  Imagine there are only a few update operations and 

many long read operations 
•  Weaker isolation levels 

–  Sacrifice correctness for efficiency 
–  Often used in practice (often default) 
–  Sometimes are hard to understand 
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Degrees of Isolation 

•  Four levels of isolation 
–  All levels use long-duration exclusive locks 
–  READ UNCOMMITTED: no read locks 
–  READ COMMITTED: short duration read locks 
–  REPEATABLE READ:  

•  Long duration read locks on individual items 

–  SERIALIZABLE:  
•  All locks long duration and lock predicates 

•  Trade-off: consistency vs concurrency 
•  Commercial systems give choice of level + others 


