
1

CSE 444: Database Internals

Lectures 13
Transactions: Overview +

Concurrency Control using Locking

1 Magda Balazinska - CSE 444, Spring 2013

Announcements

•  Lab 2 is due TODAY
–  But contest continues until end of quarter
–  Lab 3 will be released today, part 1 due next Monday

•  HW4 is due on Wednesday
–  HW3 will be released on Thursday, due next week

•  544M: Paper 3 reading is due TODAY
–  Papers 4 and 5 are due on same day in a few weeks
–  Write-up should be 2 to 3 pages long since 2 papers

Magda Balazinska - CSE 444, Spring 2013 2

80

19 30 60 100 120 140

10 15 18 19 20 60 65 70 75 80 85 90

10 15 18 20 40 60 65 80 85 90 19 50

40 50

70 75
Data file
Index file

Homework 2 Clarification

Page 1 Page 2 Page 3 Page 4
Magda Balazinska - CSE 444, Spring 2012 4

Terminology Needed For Lab 3
Buffer Manager Policies

•  STEAL or NO-STEAL
–  Can an update made by an uncommitted transaction overwrite

the most recent committed value of a data item on disk?

•  FORCE or NO-FORCE
–  Should all updates of a transaction be forced to disk before the

transaction commits?

•  Easiest for recovery: NO-STEAL/FORCE (lab 3)
•  Highest performance: STEAL/NO-FORCE (lab 5)
•  We will get back to this next week

Magda Balazinska - CSE 444, Spring 2013 5

Outline

•  Transactions motivation, definition, properties
–  344 review

•  Concurrency control and locking
–  Also 344 review

Magda Balazinska - CSE 444, Spring 2013 6

Motivating Example

UPDATE Budget
SET money=money-100
WHERE pid = 1

UPDATE Budget
SET money=money+60
WHERE pid = 2

UPDATE Budget
SET money=money+40
WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit

2

Magda Balazinska - CSE 444, Spring 2013 7

Definition

•  A transaction = one or more operations, single
real-world transition

•  Examples
–  Transfer money between accounts
–  Purchase a group of products
–  Register for a class (either waitlist or allocated)

Magda Balazinska - CSE 444, Spring 2013 8

Transactions

•  Major component of database systems
•  Critical for most applications; arguably more so

than SQL

•  Turing awards to database researchers:
–  Charles Bachman 1973
–  Edgar Codd 1981 for inventing relational dbs
–  Jim Gray 1998 for inventing transactions

Magda Balazinska - CSE 444, Spring 2013 9

Transaction Example
START TRANSACTION!

UPDATE Budget SET money = money - 100 !

WHERE pid = 1!

UPDATE Budget SET money = money + 60 !

WHERE pid = 2!

UPDATE Budget SET money = money + 40 !

WHERE pid = 3!

COMMIT (or ROLLBACK)!

Magda Balazinska - CSE 444, Spring 2013 10

ROLLBACK

•  If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

•  This causes the system to “abort” the
transaction
–  Database returns to a state without any of the

changes made by the transaction

Magda Balazinska - CSE 444, Spring 2013 11

Reasons for Rollback

•  User changes their mind (“ctl-C”/cancel)

•  Explicit in program, when app program finds a
problem
–  e.g. when qty on hand < qty being sold

•  System-initiated abort
–  System crash
–  Housekeeping

•  e.g. due to timeouts
Magda Balazinska - CSE 444, Spring 2013 12

ACID Properties

•  Atomicity: Either all changes performed by
transaction occur or none occurs

•  Consistency: A transaction as a whole does not
violate integrity constraints

•  Isolation: Transactions appear to execute one
after the other in sequence

•  Durability: If a transaction commits, its changes
will survive failures

3

Magda Balazinska - CSE 444, Spring 2013 13

What Could Go Wrong?

•  Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems
–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems
–  Later lectures

•  Transaction may need to abort

Magda Balazinska - CSE 444, Spring 2013 14

Different Types of Problems
Client 1: INSERT INTO SmallProduct(name, price)

 SELECT pname, price
 FROM Product
 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads

Magda Balazinska - CSE 444, Spring 2013 15

Different Types of Problems

Client 1:
 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

Magda Balazinska - CSE 444, Spring 2013 16

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
 WHERE Account.number = ‘my-account’

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

Aborted by
system

Magda Balazinska - CSE 444, Spring 2013 17

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that
has not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads
–  Write-write conflict: lost update

•  Two transactions update the value of the same object. The
second one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

Magda Balazinska - CSE 444, Spring 2013 18

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

4

Schedules

•  Given multiple transactions
•  A schedule is a sequence of interleaved actions

from all transactions

Magda Balazinska - CSE 444, Spring 2013 19

Example

T1 T2
READ(A, t) READ(A, s)
t := t+100 s := s*2
WRITE(A, t) WRITE(A,s)
READ(B, t) READ(B,s)
t := t+100 s := s*2
WRITE(B,t) WRITE(B,s)

Magda Balazinska - CSE 444, Spring 2013 20

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Magda Balazinska - CSE 444, Spring 2013 21

Serializable Schedule

•  A schedule is serializable if it is equivalent to a
serial schedule

Magda Balazinska - CSE 444, Spring 2013 22

A Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:
This is NOT a serial schedule

Magda Balazinska - CSE 444, Spring 2013 23

A Non-Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Magda Balazinska - CSE 444, Spring 2013 24

5

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

Magda Balazinska - CSE 444, Spring 2013 25

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Magda Balazinska - CSE 444, Spring 2013 26

Conflict Serializability

Conflicts:
ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
Magda Balazinska - CSE 444, Spring 2013 27

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series
of swappings of adjacent non-conflicting
actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Magda Balazinska - CSE 444, Spring 2013 28

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

•  The test: if the graph has no cycles, then it is
conflict serializable !

Magda Balazinska - CSE 444, Spring 2013 29

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Magda Balazinska - CSE 444, Spring 2013 30

6

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A
B

B

Magda Balazinska - CSE 444, Spring 2013 31

Conflict Serializability

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost write

Equivalent, but can’t swap
Magda Balazinska - CSE 444, Spring 2013 32

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How ? We discuss three techniques in class:
–  Locks
–  Timestamps (next lecture)
–  Validation (next lecture)

Magda Balazinska - CSE 444, Spring 2013 33

Locking Scheduler

Simple idea:
•  Each element has a unique lock
•  Each transaction must first acquire the lock

before reading/writing that element
•  If lock is taken by another transaction, then wait
•  The transaction must release the lock(s)

Magda Balazinska - CSE 444, Spring 2013 34

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

Magda Balazinska - CSE 444, Spring 2013 35

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 36

7

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 37

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (why?)

Magda Balazinska - CSE 444, Spring 2013 38

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 39

Example with Multiple
Transactions

Equivalent to each transaction executing entirely
the moment it enters shrinking phase

Magda Balazinska - CSE 444, Spring 2013 40

T1 T2 T3 T4

Growing
phase

Shrinking
phase

Unlocks first
Was not waiting
for anyone

Unlocks second so
perhaps was waiting
for T3

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks and
then aborts?

Magda Balazinska - CSE 444, Spring 2013 41

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 42

8

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed
–  Also called “long-duration locks”

•  Ensures that schedules are recoverable

–  Transactions commit only after all transactions
whose changes they read also commit

•  Avoids cascading rollbacks

Magda Balazinska - CSE 444, Spring 2013 43

Deadlock

•  Transaction T1 waits for a lock held by T2;
•  But T2 waits for a lock held by T3;
•  While T3 waits for
•  . . .
•  . . .and T73 waits for a lock held by T1 !!

•  A deadlock is when two or more transactions
are waiting for each other to complete

Magda Balazinska - CSE 444, Spring 2013 44

45

Handling Deadlock

•  Deadlock avoidance
–  Acquire locks in pre-defined order
–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts (but hard to pick the right threshold)
–  Wait-for graph

•  What commercial systems use (they check graph periodically)

Magda Balazinska - CSE 444, Spring 2013

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

•  U = update lock
–  Initially like S
–  Later may be upgraded to X

•  I = increment lock (for A := A + something)
–  Increment operations commute

Recommended reading: chapter 18.4

Magda Balazinska - CSE 444, Spring 2013 46

Magda Balazinska - CSE 444, Spring 2013 47

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency
–  High overhead in managing locks

•  Coarse grain locking (e.g., tables)
–  Many false conflicts
–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks)

[commercial DBMSs]
–  Lock escalation Recommended reading: chapter 18.6

48

Phantom Problem

•  A “phantom” is a tuple that is invisible during part
of a transaction execution but not all of it.

•  Example:
–  T0: reads list of books in catalog
–  T1: inserts a new book into the catalog
–  T2: reads list of books in catalog: New book appears!

•  Can this occur?
•  Depends on locking details

–  eg, granularity of locks
•  To avoid phantoms needs predicate locking

Magda Balazinska - CSE 444, Spring 2013

9

The Locking Scheduler

Task 1:
Add lock/unlock requests to transactions

•  Examine all READ(A) or WRITE(A) actions
•  Add appropriate lock requests
•  Ensure 2PL !

Recommended reading: chapter 18.5

Magda Balazinska - CSE 444, Spring 2013 49

The Locking Scheduler

Task 2:
Execute the locks accordingly

•  Lock table: a big, critical data structure in a DBMS !
•  When a lock is requested, check the lock table

–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction from
its wait list

•  When a transaction aborts, release all its locks
•  Check for deadlocks occasionally

Recommended reading: chapter 18.5
50 Magda Balazinska - CSE 444, Spring 2013

Magda Balazinska - CSE 444, Spring 2013 51

Degrees of Isolation

•  Isolation level “serializable” (i.e. ACID)
–  Golden standard
–  Requires strict 2PL and predicate locking
–  But often too inefficient
–  Imagine there are only a few update operations and

many long read operations
•  Weaker isolation levels

–  Sacrifice correctness for efficiency
–  Often used in practice (often default)
–  Sometimes are hard to understand

Magda Balazinska - CSE 444, Spring 2013 52

Degrees of Isolation

•  Four levels of isolation
–  All levels use long-duration exclusive locks
–  READ UNCOMMITTED: no read locks
–  READ COMMITTED: short duration read locks
–  REPEATABLE READ:

•  Long duration read locks on individual items

–  SERIALIZABLE:
•  All locks long duration and lock predicates

•  Trade-off: consistency vs concurrency
•  Commercial systems give choice of level + others

