CSE 444: Database Internals

Lecture 12
Query Optimization (part 3)

Guest Lecture: Sudeepa Roy

Sellinger Optimizer
* Problem:
— How to order a series of N joins
e.g. SELECT from A, B, C, D
WHERE A.a=B.b AND Ac=D.d AND B.e=C.f

« How many logical/physical plans?
— N!'ways to order joins (e.g. ABCD, ACBD,)
— Many plans per ordering (e.g. ((AB)C)D), ((AB)(CD)))
— Multiple access paths for each relation
+ E.g.index-scan vs. file scan

« Naive approach does not scale
— E.g.N =20, no. of join orders is 20! = 2.4 x 108, and many more

plans

Ack: some slides are from Sam Madden’s class at MIT 2

Sellinger Optimizer Properties

* Review: what we have done this week

+ Only left-deep plan: (((AB)C)D)
— Skeleton fixed, need to find the optimal order

» Push down selection

» Don’t consider cartesian product

* Costofaplanis|O + CPU

» Concept of interesting order during plan enumeration
— Same order as that requested by ORDER BY or GROUP GY

— Attributes that appear in equi-join predicates
« They can speed-up a sort-merge join later

Dynamic Programming

R = set of relations to join (e.g. {A, B, C, D})

Fordin {1 |R |} Choice of
. relation for
For S in {all length-d subsets of R} Logical plan

optJoin(s) = minA cs / g:ﬂzﬂsfrom

iterations
[cost(o ptJoin(s - {A}))

— [Physical == + MiN ¢ cess methods [ACCESS cOst for A]
implementation
choices [m— : P
+ MiNjgin methods COSt OF joining (S — {A}) to A]

Note: We are using optimality of subproblems. Why?

Example

» optJoin(A, B, C, D)
» Assume all joins are nested-loop

[subpian s opoors)_| Cot0poors)
A

Hash index 100

R-{A B,C,D}

* Allsubsets of size d=1

— {A}: best way to access A scan
(seq. scan, index scan, B Seg.scan 50
predicate pushdown) [Seqscan 120
— Similarly for {B}, {C}, {D} p Btree 400

scan

Example
* optloin(A,B,C,D) EEEEEEICNEEIEN
* Allsubsetsofsized=2 A Index scan 100
B Seq.scan 50
S={A,B}: AB or BA
— consider least cost option {A, B} BA 156
to access inner relation {B.C} BC 98

— Only one option for join
(Nested loop)

— Similarly for S = {B, C}, {C, D}, {A, C}, {A, D}, {B, D}
+ Total logical options: choose(N, 2) * 2

Example
[suopans] optioints) _| Cost(@ptsoin(s))
« optJoin(A, B, C, D) A Index scan 100
; 8 Seq. 50
Al subsets of sized = 3 e sean
{A B} BA 156
S={A,B,C} ©.0 = o
— Remove A, compute least X
cost join {B, CL.to A {AB.C} BAC 500

— Remove B, compute lea
cost join{A, C}to B

— Remove A, compute least cost join {A, B} to C
Similarly for S = {A, B, D}, {AC, D}, {B, C, D},

optJoin(B, C)

and its cost

are already
ned i

Note: A little more general in simpledb-lab4,

compares cost of joining {B, C}to A and also Ato {B, C}

Total logical options: choose(N, 3) X 3 ---------- (x2in
simpledb)

Example
[Subplans | opion(s) | Cos(Opon(S)
A

« optJoin(A, B, C, D) Index scan 100

« Onlyone subsetofsized=4 B Seq.scan 50
{A B} BA 156

S={A,B,C,D}: {B,C} BC 98
— Remove A, compute least {AB,C} BAC 500

cost join{B, C,D}to A
— Remove B, compute le
cost join{A, C,D}to B
— Remove C, compute least cost join {A, B, D}to C
— Remove D, compute least cost join {A, B, C} to D

{B,C,D} DBC 150

"""" optJoin(B, C, D)
and its cost are
already cached
in table

< Final answer is a plan with min-cost of these four
« Total logical options: choose(N, 4) x 4 (x 2 in simpledb)

Complexity

z
S

. of different subsets considered:
— For afixed value of d, Choose(N, d) choices of subsets S of size d

— For afixed choice of S, |S| = d, d choices of the inner relation A to be joined
with S - {A}

Total #logical options considered
— Choose(N, 1) + Choose(N, 2) * 2 + + Choose (N, N) *N
<= N Z4.1,n Choose (N, d)
<=N2N
— #Options double in simpleDB
— N=20, cost =2.1x 107
— Much smaller than the no. of left deep trees = N! = 20! = 2.4 x 1018

« If there are m ways of doing the physical join, then #physical options =
O(mN2N), also another factor for multiple “interesting orders”

Why Left-Deep and Not Right-Deep

» Asymmetric, cost depends on the order
— Left: Outer relation Right: Inner relation

— For nested-loop-join,

we try to load the outer(typically smaller) relation in
memory, then read the inner relation one page at a
time

B(R) + B(R) * B(S)

— For index-join,

we assume right (inner) relation has index 10

Why Left-Deep and Not Right-Deep

« Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass),
more efficient

2. One pass join: Uses smaller memory
1. ((R, S), T), can reuse the space for R while joining (R, S) with T
2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,
worse if more relations

3. Nested loop join, consider top-down iterator next()

1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base
relation T multiple times

2. (R, (S, T)): Reads the chunks of R once, reads computed relation
(S, T) multiple times, either more time or more space

11

Implementation in SimpleDB (lab4)

1. JoinOptimizer.java (and the classes used there)

><]

2. Returns vector of “LogicalJoinNode” sd=Uq

a) Two base tables, two join attributes, predicate >4

b) e.g.R(b), S(c, d), T(a 1), U(p, &) / \\f u

c) (R,S,RaSc,=) g

d) Recall that SimpleDB stores all attributes of/,A/= A T

R, S after their join R.a, R.b, S.c, S.d

R S

3. Output vector looks like:
<R, S,Ra,S.c), (R T,Rb T, (S,U, Sd Ug)>

Implementation in SimpleDB (lab4)

Any advantage of returning pairs?
» Flexibility to consider all linear plans

<(R,S,R.a,S.c), (R, T,Rb, T.f), (U, S, U.q, S.d)> S?fuq
More Details: / =J
1. You mainly need to implement “orderJoin(..)" U 7{:\&

2. “CostCard” data structure stores a plan, its cost =

Maps a set of LIN to
avector of LIN (best plan for the vector), R
its cost,

and cardinality: you would need to estimate them =5 T
3. “PlanCache” stores the table in dyn. Prog:
S

and its cardinality
LIN = LogicalJoinNode

The Index Selection Problem

* Sofar
— Given a physical plan, compute its cost

— Given some choices of indexes for each relation,
find the best logical/physical plan (Sellinger)

* Now
— How to automatically choose indexes for relations
— Index Selection Problem! (recall from 344)
— Adv of index: search Disadv.: update
— What are the parameters to consider?

The Index Selection Problem
« Given a database schema (tables, attributes)

« Given a “query workload”:
— Workload = a set of (query, frequency) pairs
« Either from log, or from the application programmer
— The queries may be both SELECT and updates
— Frequency = either a count, or a percentage

» Select a set of indexes that optimizes the workload

— Either candidates are suggested to the programmer or some
indexes are automatically created

[In general this is a very hard problem]

15

Basic Index Selection Guidelines

Consider queries in workload in order of importance
— Ifaquery is only executed 1 out of 10000 times, we can ignore it

Consider relations accessed by query
— No point indexing other relations

Look at WHERE clause for possible search key
— Selection or join condition, selectivity of conditions

Try to choose indexes that speed-up multiple queries

Basic Index Selection Guidelines

» And then consider the following...
1. Which search key
2. Multi attribute keys (covering index)
3. Cluster or Unclustered
4. Hash Index or B+ tree Index

5. Queryvs. Updates

1. Which Search Key

+ Make some attribute K a search key if the
WHERE clause contains:
— An exact match on K
— Arange predicate on K
— Ajoin on K

2. Multi-attribute Keys

Consider creating a multi-attribute key K1, K2, ... for a relation

if
1. WHERE clause has matches on K1, K2, ...

— But also consider separate indexes

2. SELECT clause contains only K1, K2, ..

— A covering index is one that can be used exclusively to answer a
query without accessing the actual relation

— e.g.index R(K1,K2) covers the query:

SELECT K2 FROM R WHERE K1=55

19

You will know about the other considerations

(Cluster or Unclustered, Hash Index or B+ tree Index,
Query vs. Updates)

later in the lecture on “Database Tuning”

20

