CSE 444: Database Internals

Lecture 12
Query Optimization (part 3)

Guest Lecture: Sudeepa Roy

Sellinger Optimizer

- Problem:
- How to order a series of N joins
e.g. SELECT from A, B, C, D

WHERE A.a = B.b AND A.c= D.d AND B.e = C.f

- How many logical/physical plans?
- N ! ways to order joins (e.g. ABCD, ACBD,)
- Many plans per ordering (e.g. (((AB)C)D), ((AB)(CD)))
- Multiple access paths for each relation
- E.g. index-scan vs. file scan
- Naïve approach does not scale
- E.g. $\mathrm{N}=20$, no. of join orders is $20!=2.4 \times 10^{18}$, and many more plans

Dynamic Programming

$\mathbf{R}=$ set of relations to join (e.g. $\{A, B, C, D\}$)
For d in $\{1 \ldots|\mathbf{R}|\}$
Choice of relation for
Logical plan
For \mathbf{S} in $\{$ all length-d subsets of $\mathbf{R}\}$ $\operatorname{optJoin}(\mathbf{S})=$ min $_{\mathbf{A} \in \mathbf{S}}$
$[\operatorname{cost}($ optJoin $(\mathbf{S}-\{\mathbf{A}\}))$
Physical $\Longrightarrow+$ min $_{\text {access methods }}$ [access cost for A] implementation \qquad $\Longrightarrow+\min _{\text {join methods }}$ cost of joining $(S-\{A\})$ to $\left.A\right]$

Note: We are using optimality of subproblems. Why?

Example

- optJoin(A, B, C, D)

$$
\mathbf{R}=\{\mathrm{A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}
$$

- Assume all joins are nested-loop
- All subsets of size $d=1$
- \{A\}: best way to access A (seq. scan, index scan, predicate pushdown)
- Similarly for $\{B\},\{C\},\{D\}$

Subplan S	optJoin(S)	Cost(OptJoin(S))
A	Hash index scan	100
B	Seq. scan	50
C	Seq scan	120
D	B+tree scan	400

Example

- optJoin(A, B, C, D)
- All subsets of size $d=2$
$S=\{A, B\}: A B$ or $B A$
- consider least cost option
to access inner relation
- Only one option for join
(Nested loop)
- Similarly for $S=\{B, C\},\{C, D\},\{A, C\},\{A, D\},\{B, D\}$
- Total logical options: choose(N, 2) * 2

- optJoin(A, B, C, D) - All subsets of size d=3	mol		
	Subplan S	optoin(S)	Cost(Opt.Join(S))
	A	Index scan	100
	B	Seq. scan	50
$S=\{A, B, C\}$:	(A, B \}	BA	156
	(B,C ${ }^{\text {d }}$	BC	98
- Remove A, compute least cost join \{B, C\} to A	\ldots		
	\{A, B, C \}	BAC	500
- Remove B, compute least cost join $\{A, C\}$ to B - Remove A, compute least Similarly for $S=\{A, B, D\}$,	join $\{A$,	o C $\mathrm{D}\}, \ldots$	optJoin(B, C) and its cost are already cached in table
Note: A little more general in simpledb-lab4, compares cost of joining $\{B, C\}$ to A and also A to $\{B, C\}$			
Total logical options: choose(N, 3) x 3 ----------- (x 2 in simpledb)			

Complexity

- No. of different subsets considered:
- For a fixed value of $\mathrm{d}, \mathrm{Choose}(\mathrm{N}, \mathrm{d})$ choices of subsets S of size d
- For a fixed choice of $S,|S|=d, d$ choices of the inner relation A to be joined with S - $\{\mathrm{A}\}$
- Total \#logical options considered
- Choose(N, 1) + Choose(N, 2) * $2+\ldots . .+$ Choose (N, N) * N
$<=N \Sigma_{d=1 \text { to } N}$ Choose (N, d)
$<=\mathrm{N} 2^{\mathrm{N}}$
- \#Options double in simpleDB
- $\mathrm{N}=20$, cost $=2.1 \times 10^{7}$
- Much smaller than the no. of left deep trees $=\mathrm{N}!=20!=2.4 \times 10^{18}$
- If there are m ways of doing the physical join, then \#physical options = $\mathrm{O}\left(\mathrm{mN}^{\mathrm{N}}\right)$, also another factor for multiple "interesting orders"

Example

- optJoin(A, B, C, D)

Subplan S	optJJoin(S)	Cost(OptJoin(S))

$\begin{array}{llll} & A & \text { Index scan } & 100\end{array}$

$S=\{A, B, C, D\}:$	$\{A, B\}$	$B A$	156
	$\{B, C\}$	$B C$	98

- Remove A, compute least cost join $\{B, C, D\}$ to A $\{\mathrm{B}, \mathrm{B}, \mathrm{BC}$ 98 $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\} \quad \mathrm{BAC}$ 500
150
- Remove B, compute lea
$\{\mathrm{B}, \mathrm{C}, \mathrm{D}\} \quad \mathrm{DBC}$ 150
cost join $\{A, C, D\}$ to B
- Remove C, compute least cost join $\{A, B, D\}$ to C
- Remove D, compute least cost join $\{A, B, C\}$ to D
- Final answer is a plan with min-cost of these four
- Total logical options: choose($\mathrm{N}, 4) \times 4$ (x 2 in simpledb)

8

Why Left-Deep and Not Right-Deep

- Asymmetric, cost depends on the order
- Left: Outer relation Right: Inner relation
- For nested-loop-join,
we try to load the outer(typically smaller) relation in memory, then read the inner relation one page at a time

$$
B(R)+B(R) * B(S)
$$

- For index-join,
we assume right (inner) relation has index

Why Left-Deep and Not Right-Deep

- Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass), more efficient
2. One pass join: Uses smaller memory
3. ((R, S), $T)$, can reuse the space for R while joining (R, S) with T
4. (R, (S, T)): Need to hold R, compute (S, T), then join with R, worse if more relations
5. Nested loop join, consider top-down iterator next()
6. ((R, S), T), Reads the chunks of (R, S) once, reads stored base relation T multiple times
7. (R, (S, T)): Reads the chunks of R once, reads computed relation (S, T) multiple times, either more time or more space

Implementation in SimpleDB (lab4)

1. JoinOptimizer.java (and the classes used there)
2. Returns vector of "LogicalJoinNode"
a) Two base tables, two join attributes, predicate
b) e.g. $R(a, b), S(c, d), T(a, f), U(p, q)$
c) (R, S, R.a, S.c, =)
d) Recall that SimpleDB stores all attributes of

R, S after their join R.a, R.b, S.c, S.d
3. Output vector looks like:
<(R, S, R.a, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

Implementation in SimpleDB (lab4)

Any advantage of returning pairs?

- Flexibility to consider all linear plans $<(R$, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)>

More Details:

1. You mainly need to implement "orderJoin(..)"
2. "CostCard" data structure stores a plan, its cost and cardinality: you would need to estimate them
3. "PlanCache" stores the table in dyn. Prog: Maps a set of LJN to a vector of LJN (best plan for the vector),

its cost,
and its cardinality

The Index Selection Problem

- Given a database schema (tables, attributes)
- Given a "query workload":
- Workload = a set of (query, frequency) pairs
- Either from log, or from the application programmer
- The queries may be both SELECT and updates
- Frequency = either a count, or a percentage
- Select a set of indexes that optimizes the workload
- Either candidates are suggested to the programmer or some indexes are automatically created
In general this is a very hard problem

The Index Selection Problem

- So far
- Given a physical plan, compute its cost
- Given some choices of indexes for each relation, find the best logical/physical plan (Sellinger)
- Now
- How to automatically choose indexes for relations
- Index Selection Problem! (recall from 344)
- Adv of index: search Disadv.: update
- What are the parameters to consider?

Basic Index Selection Guidelines

- Consider queries in workload in order of importance
- If a query is only executed 1 out of 10000 times, we can ignore it
- Consider relations accessed by query
- No point indexing other relations
- Look at WHERE clause for possible search key
- Selection or join condition, selectivity of conditions
- Try to choose indexes that speed-up multiple queries

Basic Index Selection Guidelines

- And then consider the following...

1. Which search key
2. Multi attribute keys (covering index)
3. Cluster or Unclustered
4. Hash Index or B+ tree Index
5. Query vs. Updates

1. Which Search Key

- Make some attribute K a search key if the WHERE clause contains:
- An exact match on K
- A range predicate on K
- A join on K

2. Multi-attribute Keys

Consider creating a multi-attribute key $\mathrm{K} 1, \mathrm{~K} 2, \ldots$ for a relation if

1. WHERE clause has matches on $\mathrm{K} 1, \mathrm{~K} 2, \ldots$

- But also consider separate indexes

2. SELECT clause contains only $\mathrm{K} 1, \mathrm{~K} 2$, ..

- A covering index is one that can be used exclusively to answer a query without accessing the actual relation
- e.g. index $R(K 1, K 2)$ covers the query:

SELECT K2 FROM R WHERE K1=55

You will know about the other considerations (Cluster or Unclustered, Hash Index or B+ tree Index, Query vs. Updates)
later in the lecture on "Database Tuning"

