
1

CSE 444: Database Internals

Lecture 12

Query Optimization (part 3)

Guest Lecture: Sudeepa Roy

1

Sellinger Optimizer
• Problem:

– How to order a series of N joins

e.g. SELECT from A, B, C, D

 WHERE A.a = B.b AND A.c = D.d AND B.e = C.f

• How many logical/physical plans?

– N! ways to order joins (e.g. ABCD, ACBD, ….)

– Many plans per ordering (e.g. (((AB)C)D), ((AB)(CD)))

– Multiple access paths for each relation

• E.g. index-scan vs. file scan

• Naïve approach does not scale

– E.g. N = 20, no. of join orders is 20! = 2.4 x 1018 , and many more

plans

2 Ack: some slides are from Sam Madden’s class at MIT

Sellinger Optimizer Properties

• Review: what we have done this week

• Only left-deep plan: (((AB)C)D)

– Skeleton fixed, need to find the optimal order

• Push down selection

• Don’t consider cartesian product

• Cost of a plan is IO + CPU

• Concept of interesting order during plan enumeration

– Same order as that requested by ORDER BY or GROUP GY

– Attributes that appear in equi-join predicates

• They can speed-up a sort-merge join later

3

Dynamic Programming

R = set of relations to join (e.g. {A, B, C, D})

For d in {1 … |R |}

 For S in {all length-d subsets of R}

 optJoin(S) = minA S

 [cost(optJoin(S – {A}))

 + minaccess methods [access cost for A]

 + minjoin methods cost of joining (S – {A}) to A]

Note: We are using optimality of subproblems. Why?
4

Cached from

previous

iterations

Physical

implementation

choices

Choice of

relation for

Logical plan

Example

• optJoin(A, B, C, D) R = {A, B, C, D}

• Assume all joins are nested-loop

• All subsets of size d = 1

– {A}: best way to access A

 (seq. scan, index scan,

 predicate pushdown)

– Similarly for {B}, {C}, {D}

5

Subplan S optJoin(S) Cost(OptJoin(S))

A Hash index

scan

100

B Seq. scan 50

C Seq scan 120

D B+tree

scan

400

Example

• optJoin(A, B, C, D)

• All subsets of size d = 2

S = {A, B} : AB or BA

– consider least cost option

to access inner relation

– Only one option for join

(Nested loop)

– Similarly for S = {B, C}, {C, D}, {A, C}, {A, D}, {B, D}

• Total logical options: choose(N, 2) * 2

6

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

…

{A, B} BA 156

{B, C} BC 98

……..

2

Example

• optJoin(A, B, C, D)

• All subsets of size d = 3

S = {A, B, C} :

– Remove A, compute least

cost join {B, C} to A

– Remove B, compute least

 cost join {A, C} to B

– Remove A, compute least cost join {A, B} to C

Similarly for S = {A, B, D}, {A C, D}, {B, C, D}, ….

Note: A little more general in simpledb-lab4,

compares cost of joining {B, C} to A and also A to {B, C}

Total logical options: choose(N, 3) x 3 ---------- (x 2 in

simpledb)

7

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

….

{A, B} BA 156

{B, C} BC 98

….

{A, B, C} BAC 500

……..

optJoin(B, C)

and its cost

are already

cached in table

Example

• optJoin(A, B, C, D)

• Only one subset of size d = 4

S = {A, B, C, D} :

– Remove A, compute least

cost join {B, C, D} to A

– Remove B, compute least

cost join {A, C, D} to B

– Remove C, compute least cost join {A, B, D} to C

– Remove D, compute least cost join {A, B, C} to D

• Final answer is a plan with min-cost of these four

• Total logical options: choose(N, 4) x 4 (x 2 in simpledb)

8

Subplan S optJoin(S) Cost(OptJoin(S))

A Index scan 100

B Seq. scan 50

{A, B} BA 156

{B, C} BC 98

{A, B, C} BAC 500

{B, C, D} DBC 150

……..
optJoin(B, C, D)

and its cost are

already cached

in table

Complexity

• No. of different subsets considered:

– For a fixed value of d, Choose(N, d) choices of subsets S of size d

– For a fixed choice of S, |S| = d, d choices of the inner relation A to be joined

with S - {A}

• Total #logical options considered

– Choose(N, 1) + Choose(N, 2) * 2 + ….. + Choose (N, N) * N

 <= N d = 1 to N Choose (N, d)

 <= N 2N

– #Options double in simpleDB

– N = 20, cost = 2.1 x 107

– Much smaller than the no. of left deep trees = N! = 20! = 2.4 x 1018

• If there are m ways of doing the physical join, then #physical options =

O(mN2N), also another factor for multiple “interesting orders”

9

Why Left-Deep and Not Right-Deep

• Asymmetric, cost depends on the order

– Left: Outer relation Right: Inner relation

– For nested-loop-join,

 we try to load the outer(typically smaller) relation in

memory, then read the inner relation one page at a

time

 B(R) + B(R) * B(S)

– For index-join,

 we assume right (inner) relation has index
10

Why Left-Deep and Not Right-Deep

• Advantages of left-deep trees?

1. Fits well with standard join algorithms (nested loop, one-pass),

more efficient

2. One pass join: Uses smaller memory

1. ((R, S), T), can reuse the space for R while joining (R, S) with T

2. (R, (S, T)): Need to hold R, compute (S, T), then join with R,

worse if more relations

3. Nested loop join, consider top-down iterator next()

1. ((R, S), T), Reads the chunks of (R, S) once, reads stored base

relation T multiple times

2. (R, (S, T)): Reads the chunks of R once, reads computed relation

(S, T) multiple times, either more time or more space

11

1. JoinOptimizer.java (and the classes used there)

2. Returns vector of “LogicalJoinNode”

a) Two base tables, two join attributes, predicate

b) e.g. R(a, b), S(c, d), T(a, f), U(p, q)

c) (R, S, R.a, S.c, =)

d) Recall that SimpleDB stores all attributes of

R, S after their join R.a, R.b, S.c, S.d

3. Output vector looks like:
<(R, S, R.a, S.c), (R, T, R.b, T.f), (S, U, S.d, U.q)>

Implementation in SimpleDB (lab4)

12

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

3

Any advantage of returning pairs?

• Flexibility to consider all linear plans
 <(R, S, R.a,S.c), (R, T, R.b, T.f), (U, S, U.q, S.d)>

More Details:

1. You mainly need to implement “orderJoin(..)”

2. “CostCard” data structure stores a plan, its cost

and cardinality: you would need to estimate them

3. “PlanCache” stores the table in dyn. Prog:
Maps a set of LJN to

 a vector of LJN (best plan for the vector),

 its cost,

 and its cardinality

 LJN = LogicalJoinNode

Implementation in SimpleDB (lab4)

13

R S

T

U

R.a = S.c

R.b = T.f

S.d = U.q

The Index Selection Problem

• So far

– Given a physical plan, compute its cost

– Given some choices of indexes for each relation,

find the best logical/physical plan (Sellinger)

• Now

– How to automatically choose indexes for relations

– Index Selection Problem! (recall from 344)

– Adv of index: search Disadv.: update

– What are the parameters to consider?

14

The Index Selection Problem

• Given a database schema (tables, attributes)

• Given a “query workload”:

– Workload = a set of (query, frequency) pairs

• Either from log, or from the application programmer

– The queries may be both SELECT and updates

– Frequency = either a count, or a percentage

• Select a set of indexes that optimizes the workload

– Either candidates are suggested to the programmer or some

indexes are automatically created

15

In general this is a very hard problem

Basic Index Selection Guidelines

• Consider queries in workload in order of importance

– If a query is only executed 1 out of 10000 times, we can ignore it

• Consider relations accessed by query

– No point indexing other relations

• Look at WHERE clause for possible search key

– Selection or join condition, selectivity of conditions

• Try to choose indexes that speed-up multiple queries

16

Basic Index Selection Guidelines

• And then consider the following…

1. Which search key

2. Multi attribute keys (covering index)

3. Cluster or Unclustered

4. Hash Index or B+ tree Index

5. Query vs. Updates

17

1. Which Search Key

• Make some attribute K a search key if the

WHERE clause contains:

– An exact match on K

– A range predicate on K

– A join on K

18

4

2. Multi-attribute Keys

Consider creating a multi-attribute key K1, K2, … for a relation

if

1. WHERE clause has matches on K1, K2, …

– But also consider separate indexes

2. SELECT clause contains only K1, K2, ..

– A covering index is one that can be used exclusively to answer a

query without accessing the actual relation

– e.g. index R(K1,K2) covers the query:

19

SELECT K2 FROM R WHERE K1=55

You will know about the other considerations

(Cluster or Unclustered, Hash Index or B+ tree Index,

Query vs. Updates)

later in the lecture on “Database Tuning”

20

