
1

CSE 444: Database Internals

Lecture 10
Query Optimization (part 1)

1 Magda Balazinska - CSE 444, Spring 2013

We Already Know How to
Compute Cost of one Plan

Let’s review how to do this with an example

Magda Balazinska - CSE 444, Spring 2013 2

Magda Balazinska - CSE 444, Spring 2013 3

R S

a = d

(File scan) (File scan)

(Sort-merge join)

(Hash join)

(b) σ b=100

Physical Query Plan
Total cost
= (a) 3B(R) + 3B(S)
+ (b) no IO
+ (c) B(T) * 1/25 * 1/2

Total cost ≈ 544 I/Os

(a)

(d)

B(R) = 100
B(S) = 80
B(T) = 200

T(R) = 1,000
T(S) = 1,000
T(T) = 1,000

V(R,a) = 1000
V(R,b) = 10

M = 20 R(a,b,c)
S(d,e,f)
T(g,h,i)

f = g

T (Clustered index on (h,j))

(c) σ h=3 ∧ j > 1000

V(S,d) = 800
V(S,f) = 10

V(T,h) = 25
V(T,j) = 200 in [0,2000]
V(T,g) = 50

Cardinality of result: 40

 (Use B+ tree index)

Next Step: How to Find a Good
Plan Automatically?

This is the role of the query optimizer

Magda Balazinska - CSE 444, Spring 2013 4

Query Optimization Overview

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

5

What We Already Know…
Supplier(sno,sname,scity,sstate)

Part(pno,pname,psize,pcolor)

Supply(sno,pno,price)
For each SQL query….
SELECT S.sname
FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA’
AND S.sno = U.sno
AND U.pno = 2

There exist many logical query plan…

Magda Balazinska - CSE 444, Spring 2013 6

2

Magda Balazinska - CSE 444, Spring 2013

Example Query: Logical Plan 1

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

7

Example Query: Logical Plan 2

Magda Balazinska - CSE 444, Spring 2013 8

Supplier Supply

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

σ pno=2

What We Also Know

•  For each logical plan…

•  There exist many physical plans

Magda Balazinska - CSE 444, Spring 2013 9

Example Query: Physical Plan 1

Magda Balazinska - CSE 444, Spring 2013 10

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

Example Query: Physical Plan 2

Magda Balazinska - CSE 444, Spring 2013 11

Supplier Supply

sno = sno

σ scity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (Index scan)

(Index nested loop)

(On the fly)

(On the fly)

Magda Balazinska - CSE 444, Spring 2013 12

Query Optimizer Overview

•  Input: A logical query plan
•  Output: A good physical query plan
•  Basic query optimization algorithm

–  Enumerate alternative plans (logical and physical)
–  Compute estimated cost of each plan

•  Compute number of I/Os
•  Optionally take into account other resources

–  Choose plan with lowest cost
–  This is called cost-based optimization

3

13	

Lessons

•  No magic “best” plan: depends on the data

•  In order to make the right choice
–  Need to have statistics over the data
–  The B’s, the T’s, the V’s
–  Commonly (and in lab 4): histograms over base data

Magda Balazinska - CSE 444, Spring 2013 14

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2013

15

Relational Algebra Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))
–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R ⋈ S same as S ⋈ R
–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T

Magda Balazinska - CSE 444, Spring 2013

Left-Deep Plans,
Bushy Plans, and Linear Plans

16

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

Magda Balazinska - CSE 444, Spring 2013

Linear plan: One input to each join is a relation from disk
Can be either left or right input

Commutativity, Associativity,
Distributivity

17	

R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T
R ⨝ S = S ⨝ R, R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T

R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

Magda Balazinska - CSE 444, Spring 2013

Laws Involving Selection

18	

 σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
 σ C OR C’(R) = σ C(R) ∪ σ C’(R)
 σ C (R ⨝ S) = σ C (R) ⨝ S

 σ C (R – S) = σ C (R) – S
 σ C (R ∪ S) = σ C (R) ∪ σ C (S)
 σ C (R ⨝ S) = σ C (R) ⨝ S

Magda Balazinska - CSE 444, Spring 2013

Assuming C on
attributes of R

4

19	

Example:
Simple Algebraic Laws

•  Example: R(A, B, C, D), S(E, F, G)
 σ F=3 (R ⨝ D=E S) = ?
 σ A=5 AND G=9 (R ⨝ D=E S) = ?

Magda Balazinska - CSE 444, Spring 2013 20	

Laws Involving Projections

•  Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))

ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S))

ΠM(ΠN(R)) = ΠM(R)

 /* note that M ⊆ N */

Magda Balazinska - CSE 444, Spring 2013

Laws involving grouping and
aggregation

21	

Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

δ(γA, agg(B)(R)) = γA, agg(B)(R)

γA, agg(B)(δ(R)) = γA, agg(B)(R)
 if agg is “duplicate insensitive”

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D)))

Magda Balazinska - CSE 444, Spring 2013

Laws Involving Constraints

22

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Magda Balazinska - CSE 444, Spring 2013

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees
–  Many implementations for each operator
–  Many access paths for each relation

•  File scan or index + matching selection condition

•  Cannot consider ALL plans
–  Heuristics: only partial plans with “low” cost

Magda Balazinska - CSE 444, Spring 2013 23 24

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2013

5

Key Decisions

Logical plan
•  What logical plans do we consider (left-deep,

bushy ?); Search Space

•  Which algebraic laws do we apply, and in which
context(s) ?; Optimization rules

•  In what order do we explore the search
space ?; Optimization algorithm

25 Magda Balazinska - CSE 444, Spring 2013

Key Decisions

Physical plan
•  What physical operators to use?

•  What access paths to use (file scan or index)?

•  Pipeline or materialize intermediate results?

These decisions also affect the search space

26 Magda Balazinska - CSE 444, Spring 2013

Two Types of Optimizers

•  Heuristic-based optimizers:
–  Apply greedily rules that always improve plan

•  Typically: push selections down
–  Very limited: no longer used today

•  Cost-based optimizers:
–  Use a cost model to estimate the cost of each plan
–  Select the “cheapest” plan
–  We focus on cost-based optimizers

Magda Balazinska - CSE 444, Spring 2013 27

Three Approaches to Search
Space Enumeration

•  Complete plans

•  Bottom-up plans

•  Top-down plans

Magda Balazinska - CSE 444, Spring 2013 28

Complete Plans

Magda Balazinska - CSE 444, Spring 2013 29

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

30

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

Magda Balazinska - CSE 444, Spring 2013

6

Top-down Partial Plans

31

SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T
WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S
WHERE R.B=S.B
 and R.A < 40

SELECT *
FROM R
WHERE R.A < 40

Magda Balazinska - CSE 444, Spring 2013

Two Types of Plan
Enumeration Algorithms

•  Dynamic programming (in class)
–  Based on System R (aka Selinger) style optimizer[1979]
–  Limited to joins: join reordering algorithm
–  Bottom-up

•  Rule-based algorithm (will not discuss)
–  Database of rules (=algebraic laws)
–  Usually: dynamic programming
–  Usually: top-down

Magda Balazinska - CSE 444, Spring 2013 32

