CSE 444: Database Internals

Lecture 9
Query Plan Cost Estimation

Magda Balazinska - CSE 444, Spring 2013

Where We Are

We already know how to

- Compute the cost of different operators
- In terms of number IOs
- Normally should also consider CPU and network
- Compute the cost of retrieving data from disk
- Using a file scan
- Using an index and an equality predicate

Access Path

- Access path: a way to retrieve tuples from a table
- A file scan
- An index plus a matching selection condition
- Index matches selection condition if it can be used to retrieve just tuples that satisfy the condition
- Example: Supplier(sid,sname,scity,sstate)
- B+-tree index on (sstate,scity)
- matches sstate='WA'
- does not match sid=3, does not match scity='Seattle'

Where We Are

Learning how to estimate cost of a query plan

Where We Are Going

We still need to

- Compute cost of retrieving data from disk
- For more sophisticated predicates than equality
- Compare the cost of different options
- Compute cost of a complete plan
- How to put everything together

Access Path Selection

- Supplier(sid,sname,scity,sstate)
- Selection condition: sid > $300 \wedge$ scity=‘Seattle’
- Indexes: B+-tree on sid and B+-tree on scity
- Which access path should we use?
- We should pick the most selective access path

Access Path Selectivity

- Access path selectivity is the number of pages retrieved if we use this access path
- Most selective retrieves fewest pages
- As we saw earlier, for equality predicates
- Selection on equality: $\sigma_{a=v}(R)$
$-V(R, a)=$ \# of distinct values of attribute a
$-1 / V(R, a)$ is thus the reduction factor
- Clustered index on a: cost $\mathbf{B}(\mathbf{R}) / \mathbf{V}(\mathbf{R}, a)$
- Unclustered index on a: cost $T(R) / V(R, a)$
- (we are ignoring I/O cost of index pages for simplicity)

Back to Our Example

- Selection condition: sid > $300 \wedge$ scity='Seattle'
- Index 11: B+-tree on sid clustered
- Index I2: B+-tree on scity unclustered
- Let's assume
-V (Supplier,scity) $=20$
$-\operatorname{Max}($ Supplier, sid $)=1000, \operatorname{Min}($ Supplier,sid $)=1$
$-B($ Supplier $)=100, T($ Supplier $)=1000$
- Cost I1: $\mathrm{B}(\mathrm{R})^{*}\left(\right.$ Max-v)/(Max-Min) $=100^{*} 700 / 999 \boldsymbol{\sim} 70$
- Cost I2: $\mathrm{T}(\mathrm{R}) * 1 / \mathrm{V}$ (Supplier,scity) $=\mathbf{1 0 0 0} / \mathbf{2 0}=50$

Access Path Selectivity Summary

First compute the reduction factor for predicate

- Predicate on single attribute
- Equality: $X=1 / V(R, a)$
- Range: $\mathrm{X}=(\operatorname{Max}(\mathrm{R}, \mathrm{a})-\mathrm{v}) /(\operatorname{Max}(\mathrm{R}, \mathrm{a})-\operatorname{Min}(\mathrm{R}, \mathrm{a}))$
- Predicate on multiple attributes (using single index)
- Compute reduction factor for each attribute X_{1} and X_{2}
- Multiple the reduction factors: $\mathrm{X}=\mathrm{X}_{1} \mathrm{X}_{2}$

Second compute the number of page IOs

- Clustered: $B(R)^{*} X$
- Unclustered $T(R)$ * X

Back to Estimating Cost of a Query Plan

- We already know how to
- Compute the cost of different operations (last time)
- Compute cost of retrieving tuples from disk with different access paths
- We still need to
- Compute cost of a complete plan

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities
- We learned how to compute the cost last time
- But how do we compute cardinalities?

Selection: Cardinality of Result

- Multiply input cardinality by reduction factor
- Similar to estimating access path selectivity
- In fact, we also say operator/predicate selectivity
- Condition is a = c /* value selection on R */
- Selectivity $=1 / \mathrm{V}(\mathrm{R}, \mathrm{a})$
- Condition is $\mathrm{a}<\mathrm{v} \quad / *$ range selection on $\mathrm{R} * /$ - Selectivity = (v-Min(R, a))/(Max(R,a) - Min(R,a))
- Multiple conditions: assume independence
- Use product of the reduction factors for the terms
- Condition is $\mathrm{a}=\mathrm{v} 1 \wedge \mathrm{~b}=\mathrm{v} 2$
- Selectivity $=1 /\left(\mathrm{V}(\mathrm{R}, \mathrm{a})^{*} \mathrm{~V}(\mathrm{R}, \mathrm{b})\right)$

Join: Cardinality of Result

- For joins $R \bowtie S$
- Take product of cardinalities of relations R and S
- Apply reduction factors for each term in join condition
- Terms are of the form: column1 = column2
- Reduction: 1/ (MAX(V(R,column1), V(S,column2))
- Assumes each value in smaller set has a matching value in the larger set (more on next slide)

Assumptions

- Containment of values: if $V(R, A)<=V(S, B)$, then the set of A values of R is included in the set of B values of S
- Note: this indeed holds when A is a foreign key in R, and B is a key in S
- Preservation of values: for any other attribute C , $\mathrm{V}\left(\mathrm{R} \bowtie_{\mathrm{A}=\mathrm{B}} \mathrm{S}, \mathrm{C}\right)=\mathrm{V}(\mathrm{R}, \mathrm{C}) \quad(\operatorname{or} \mathrm{V}(\mathrm{S}, \mathrm{C}))$

Selectivity of $R \bowtie_{A=B} S$

Assume $V(R, A)<=V(S, B)$

- Each tuple t in R joins with $T(S) / V(S, B)$ tuple(s) in S
- Hence $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / V(S, B)$

In general: $T\left(R \bowtie_{A=B} S\right)=T(R) T(S) / \max (V(R, A), V(S, B))$

Computing the Cost of a Plan

- Estimate cardinality in a bottom-up fashion
- Cardinality is the size of a relation (nb of tuples)
- Compute size of all intermediate relations in plan
- Estimate cost by using the estimated cardinalities

Simplifications

- In the previous examples, we assumed that all index pages were in memory
- When this is not the case, we need to add the cost of fetching index pages from disk

Statistics on Base Data

- All previous computations relied on information about the base relations
- Number of blocks: $B(R)$
- Number of tuples: $T(R)$
- Min/max values
- Number of distinct values: $\mathrm{V}(\mathrm{R}, \mathrm{a})$

Histograms	
Employee(ssn, name, age)	
$\begin{aligned} & \mathrm{T}(\text { Employee })=25000, \mathrm{~V}(\text { Empolyee, age })=50 \\ & \min (\text { age })=8, \max (\text { age })=68 \end{aligned}$	
$\sigma_{\text {age }=48}($ Empolyee $)=?$	$\sigma_{\text {age }>28 \text { and age }<35}($ Empolyee $)=?$
Magda B	ka - CSE 444, Spring 2013

Statistics on Base Data

- All previous computations relied on information
about the base relations
- Number of blocks: $\mathrm{B}(\mathrm{R})$
- Number of tuples: $\mathrm{T}(\mathrm{R})$
- Min/max values
- Number of distinct values: $\mathrm{V}(\mathrm{R}, \mathrm{a})$
Magda Balazinska - CSE 444, Spring 2013

Different Cost Models

- In previous examples, we considered IO costs
- Typically, want IO+CPU
- For parallel/distributed queries, add network bw
- If need to compare logical plans
- Compute the cardinality of each intermediate relation
- Sum up all the cardinalities

Statistics on Base Data

- DBMSs collect a lot of info for base relations
- Number of tuples (cardinality)
- Indexes, number of keys in the index
- Number of physical pages, clustering info
- Statistical information on attributes
- Min value, max value, number distinct values
- Histograms
- Correlations between columns (hard)
- Collection approach: periodic, using sampling

Histograms		
Employee(ssn, name, age)		
$\begin{aligned} & \mathrm{T}(\text { Employee })=25000, \mathrm{~V}(\text { Empolyee, age })=50 \\ & \min (\text { age })=8, \max (\text { age })=68 \end{aligned}$		
$\sigma_{\text {age }=48}($ Empolyee $)=$?	$\sigma_{\text {age }>28 \text { and age }<35}($	
$\sqrt{7}$	$\sqrt{3}$	
Estimate $=25000 / 50=500$	Estimate $=25000$	
Magda Balazinska - CSE 444, Spring 2013 30		

Histograms						
Employee(ssn, name, age)						
$\begin{aligned} & T(\text { (Employee })=25000, \mathrm{~V}(\text { Empolyee, age })=50 \\ & \min (\text { age })=8, \max (\text { age })=68 \end{aligned}$						
$\sigma_{\text {age=48 }}($ Empolyee $)=$?			$\sigma_{\text {age } 28 \text { and age } 35}($ (Empolyee $)=$?			
Age:	0.20	20.29	30-39	40-49	50-59	> 60
Tuples	200	800	5000	12000	6500	500
Magda Balazinsa - CSE 444, Spring 2013						

Types of Histograms

- How should we determine the bucket boundaries in a histogram?
Employee(ssn, name, age)
Histograms
Eq-width:

Age:	$0 . .20$	$20 . .29$	$30-39$	$40-49$	$50-59$	>60
Tuples	200	800	5000	12000	6500	500

Eq-depth:

Age:	$0 . .35$	$36 . .40$	$41-44$	$45-52$	$53-56$	>57
Tuples	1800	2000	2100	2200	1900	1800

Compressed: store separately highly frequent values: $(48,1900)$ Magda Balazinska - CSE 444, Spring 2013

Difficult Questions on Histograms

- Small number of buckets
- Hundreds, or thousands, but not more
- WHY ?
- Not updated during database update, but recomputed periodically
- WHY ?
- Multidimensional histograms rarely used - WHY ?

Magda Balazinska - CSE 444, Spring 2013

Summary

- What we know
- Different types of physical query plans
- How to compute the cost of a query plan
- Although it is hard to compute the cost accurately
- We can now compare query plans!
- Next: Query optimization

