
1 

CSE 444: Database Internals 

Lecture 8 
Operator Algorithms (part 2) 

1 Magda Balazinska - CSE 444, Spring 2013 Magda Balazinska - CSE 444, Spring 2013 

Outline 

•  Join operator algorithms 
–  One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
–  Two-pass algorithms (Sec 15.4 and 15.5) 

2 

Magda Balazinska - CSE 444, Spring 2013 

Review: Access Methods 

•  Heap file 
–  Scan tuples one at the time 

•  Hash-based index 
–  Efficient selection on equality predicates  
–  Can also scan data entries in index 

•  Tree-based index 
–  Efficient selection on equality or range predicates 
–  Can also scan data entries in index 

3 Magda Balazinska - CSE 444, Spring 2013 

Index Based Selection 

•  Selection on equality: σa=v(R) 

•  V(R, a) = # of distinct values of attribute a 

•  Clustered index on a:  cost B(R)/V(R,a) 
•  Unclustered index on a: cost T(R)/V(R,a) 

•  Note: we ignored I/O cost for index pages 

4 

Magda Balazinska - CSE 444, Spring 2013 

Index Based Selection 

•  Example: 
 
•  Table scan: B(R) = 2,000 I/Os 
•  Index based selection 

–  If index is clustered: B(R)/V(R,a) = 100 I/Os 
–  If index is unclustered: T(R)/V(R,a) = 5,000 I/Os 

•  Lesson 
–  Don’t build unclustered indexes when V(R,a) is small ! 

B(R) = 2000 
T(R) = 100,000 
V(R, a) = 20 

cost of σa=v(R) = ? 

5 Magda Balazinska - CSE 444, Spring 2013 

Index Nested Loop Join 

R ⋈ S 
•  Assume S has an index on the join attribute 
•  Iterate over R, for each tuple fetch 

corresponding tuple(s) from S 

•  Cost: 
–  If index on S is clustered:  B(R) + T(R)B(S)/V(S,a) 
–  If index on S is unclustered: B(R) + T(R)T(S)/V(S,a) 

6 



2 

Magda Balazinska - CSE 444, Spring 2013 

Outline 

•  Join operator algorithms 
–  One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
–  Two-pass algorithms (Sec 15.4 and 15.5) 

7 Magda Balazinska - CSE 444, Spring 2013 

Two-Pass Algorithms 

•  What if data does not fit in memory? 
•  Need to process it in multiple passes 

•  Two key techniques 
–  Hashing  
–  Sorting 

8 

Magda Balazinska - CSE 444, Spring 2013 

Two Pass Algorithms 
Based on Hashing 

•  Idea: partition a relation R into buckets, on disk 
•  Each bucket has size approx. B(R)/M 

M main memory buffers Disk Disk 

Relation R 
OUTPUT 

2 INPUT 

1 

hash 
function 

h M-1 

Partitions 

1 

2 

M-1 
. . . 

1 

2 

B(R) 

•  Does each bucket fit in main memory ? 
– Yes if B(R)/M <= M,   i.e. B(R) <= M2 

9 Magda Balazinska - CSE 444, Spring 2013 

Partitioned (Grace) Hash Join 

R ⋈ S 
•  Step 1: 

–  Hash S into M-1 buckets 
–  Send all buckets to disk 

•  Step 2 
–  Hash R into M-1 buckets 
–  Send all buckets to disk 

•  Step 3 
–  Join every pair of buckets 

10 

•  Partition both relations using hash fn h 
•  R tuples in partition i will only match S tuples in 

partition i. 

B main memory buffers Disk Disk 

Original  
Relation OUTPUT 

2 INPUT 

1 

hash 
function 

h M-1 

Partitions 

1 

2 

M-1 
. . . 

Partitioned Hash Join 

11 Magda Balazinska - CSE 444, Spring 2013 

Partitions 
of R & S 

Input buffer 
for Ri 

Hash table for partition 
Si ( < M-1 pages) 

B main memory buffers Disk 

Output  
 buffer 

Disk 

Join Result 

hash 
fn 
h2 

h2 

Partitioned Hash Join 

•  Read in partition of R, hash it using h2 (≠ h) 
–  Build phase 

•  Scan matching partition of S, search for matches 
–  Probe phase 

12 Magda Balazinska - CSE 444, Spring 2013 



3 

Magda Balazinska - CSE 444, Spring 2013 

Partitioned Hash Join 

•  Cost: 3B(R) + 3B(S) 
•  Assumption: min(B(R), B(S)) <= M2 

13 

Partitioned Hash Join 

•  See detailed example on the board 

Magda Balazinska - CSE 444, Spring 2013 14 

Magda Balazinska - CSE 444, Spring 2013 

External Sorting 

•  Problem: Sort a file of size B with memory M 

•  Where we need this:  
–  ORDER BY in SQL queries 
–  Several physical operators 
–  Bulk loading of B+-tree indexes.  

•  Sorting is two-pass when B < M2 

15 

External Merge-Sort: Step 1 

•  Phase one: load M pages in memory, sort 

16 

Disk Disk 

. . . . . . 

 
Size M pages 

Main memory 

Runs of length M pages 
Magda Balazinska - CSE 444, Spring 2013 

External Merge-Sort: Step 2 

•  Merge M – 1 runs into a new run 
•  Result: runs of length M (M – 1)≈ M2 

 

Magda Balazinska - CSE 444, Spring 2013 17 

Disk Disk 

. . 

. 
. . . 

Input M 

Input 1 

Input 2 
. . . . 

Output 

If B <= M2  then we are done 
Main memory 

Magda Balazinska - CSE 444, Spring 2013 

External Merge-Sort 

•  Cost: 
–  Read+write+read = 3B(R) 
–  Assumption: B(R) <= M2 

•  Other considerations 
–  In general, a lot of optimizations are possible 

18 



4 

External Merge-Sort 

•  See detailed example on the board 

Magda Balazinska - CSE 444, Spring 2013 19 

Two-Pass Join Algorithm 
Based on Sorting 

Join R ⋈ S 
•  Step 1: sort both R and S on the join attribute: 

–  Cost: 4B(R)+4B(S)  (because need to write to disk) 

•  Step 2: Read both relations in sorted order, 
match tuples 
–  Cost: B(R)+B(S) 

•  Total cost: 5B(R)+5B(S) 
•  Assumption: B(R) <= M2, B(S) <= M2 

Magda Balazinska - CSE 444, Spring 2013 20 

Two-Pass Join Algorithm 
Based on Sorting 

Join R ⋈ S 
•  If B(R) + B(S) <= M2 

–  Or if use a priority queue to create runs of length 2|M| 

•  If the number of tuples in R matching those in S is 
small (or vice versa)  

•  We can compute the join during the merge phase 

•  Total cost: 3B(R)+3B(S)  

Magda Balazinska - CSE 444, Spring 2013 21 

Two-Pass Join Algorithm 
Based on Sorting 

•  See detailed example on the board 

Magda Balazinska - CSE 444, Spring 2013 22 

Summary of Join Algorithms 

•  Nested Loop Join: B(R) + B(R)B(S) 
–  Assuming page-at-a-time refinement 

•  Hash Join: 3B(R) + 3B(S) 
–  Assuming: min(B(R), B(S)) <= M2 

•  Sort-Merge Join: 3B(R)+3B(S) 
–  Assuming B(R)+B(S) <= M2 

•  Index Nested Loop Join: B(R) + T(R)B(S)/V(S,a) 
–  Assuming S has clustered index on a 

23 Magda Balazinska - CSE 444, Spring 2013 Magda Balazinska - CSE 444, Spring 2013 

Summary of Query Execution 

•  For each logical query plan 
–  There exist many physical query plans 
–  Each plan has a different cost 
–  Cost depends on the data 

•  Additionally, for each query 
–  There exist several logical plans 

•  Next lecture: query optimization 
–  How to compute the cost of a complete plan? 
–  How to pick a good query plan for a query? 

24 


