CSE 444: Database Internals

Lecture 7
Query Execution and
Operator Algorithms (part 1)

Magda Balazinska - CSE 444, Spring 2013

What We Have Learned So Far

» Overview of the architecture of a DBMS
— Main components (summarized on next slide)
— Steps involved in query evaluation
» Access methods
— Storing data in heap files or sequential files
— Indexes (hash or B+ trees)
* Role of buffer manager
Interaction of components during query execution

Magda Balazinska - CSE 444, Spring 2013 2

DBMS Architecture

Admission Control

[Query Rewrite]
Memory Mgr
Optimizer
Disk Space Mgr
Executor
Replication Services
Process Manager | | Query Processor Admin Utilities
[Access Methods | [Buffer Manager | Shared Utilities
[Lock Manager | [Log Manager | | [Anatomy ofa Db System.

Storage Manager Red Book. 4ed.]

J. Hellerstein & M. Stonebraker.

3

What We Will Learn Next

* How to answer queries efficiently!
— Operator algorithms, especially for joins
— How to leverage indexes for selections and joins
— How to compute costs of individual operations

* How to automatically find good query plans
— How to compute the cost of a complete plan?
— How to pick a good query plan for a query?

« Start by reviewing physical plans

Magda Balazinska - CSE 444, Spring 2013 4

Query Evaluation Steps Review
SQL ?uery

{Parse & Rewrite Query]

Select Logical Plan

Query
optimization

plan

Logical

Select Physical Plan
Physical
plan
Query Execution

Physical Query Plan

(On the fly) 7

sname

(Onthefly) o

sscity='Seattle’ rsstate="WA' A pno=2

(Nested loop)

sno = sno

Suppliers Supplies

(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 6

Physical Query Plan

Logical query plan with extra annotations
» Access path selection for each relation
— Use a file scan or use an index with a predicate
— We learned various alternatives in past few lectures
» Implementation choice for each operator
— We will learn about operator algorithms
» Scheduling decisions for operators
— Pipelined execution
— Or intermediate tuple materialization

Magda Balazinska - CSE 444, Spring 2013 7

Iterator Interface

» Each operator implements this interface
Interface has only three methods
* open()
— Initializes operator state
— Sets parameters such as selection condition
* next()
— Operator invokes get_next() recursively on its inputs
— Performs processing and produces an output tuple
 close(): clean-up state

Magda Balazinska - CSE 444, Spring 2013 8

Pipelined Query Execution

(On the fly) n, oPen0

sname

open()

sscity="'Seattle’ nsstate="WA’ A pno=2

(Onthefly) o

open()
(Nested loop)

sNo = sno

open()/ open()

Suppliers Supplies
(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 9

Pipelined Query Execution

nex()
sname

(On the fly) 7

next()
sscity="Seattle’ rsstate="WA' A pno=2

(Onthefly) o

next()
(Nested loop)
Sno = sno
next()
next()/ next()
Suppliers Supplies
(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 10

Pipelined Execution

* Applies parent operator to tuples directly as
they are produced by child operators

+ Benefits
— No operator synchronization issues
— Saves cost of writing intermediate data to disk
— Saves cost of reading intermediate data from disk
— Good resource utilizations on single processor

» This approach is used whenever possible

Magda Balazinska - CSE 444, Spring 2013 1

Intermediate Tuple Materialization

» Writes the results of an operator to an
intermediate table on disk

No direct benefit but
Necessary for some operator implementations

* When operator needs to examine the same
tuples multiple times

Magda Balazinska - CSE 444, Spring 2013 12

Intermediate Tuple Materialization

(On the fIy) T sname

(Sort-merge join)

sno = sno

(Scan: write to T1) / \ (Scan: write to T2)
o ,

sscity="Seattle’ asstate="WA o pno=2

Suppliers Supplies
(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 13

Memory Management

« Each operator has some pre-allocated space
for input and output tuples
— These are tuples in-flight between operators

— These input/output queues either point to base
data in buffer pool

— Or point to new tuples on the heap

« Each operator can also allocate separate
memory for its internal state
— Either on heap or buffer pool (depends on system)

Magda Balazinska - CSE 444, Spring 2013 14

Memory Management (cont.)

+ DBMS limits how much memory each
operator can use
— This limit can be configurable

+ DBMS limits how much memory each query

can use
— This limit can be configurable

Magda Balazinska - CSE 444, Spring 2013 15

Query Execution Bottom Line

« SQL query transformed into physical plan
— Logical query plan with extra annotations
— Access path selection for each relation
— Implementation choice for each operator
— Scheduling decisions for operators

« Execution of the physical plan is pull-based

» Operators given a limited amount of memory

Magda Balazinska - CSE 444, Spring 2013 16

Operator Algorithms

Magda Balazinska - CSE 444, Spring 2013 17

Why Learn About Op Algos?

* Good algorithms can greatly improve performance
— Need to know operator algorithms to understand query plans
— Need to understand query plans to tune a DBMS

* Implemented in commercial DBMSs
— DBMSs implement different subsets of known algorithms

» Operator costs are first step toward query optimization

» Basic ideas to achieve high performance in operators
go beyond relational operators

Magda Balazinska - CSE 444, Spring 2013 18

Operator Algorithms

* How to compare implementations/algorithms?
— Using a cost model: 10, CPU, (and network bw)
— Later, will see how this plays a role in optimization
» Some key design criteria
— Cost: Different algorithms have different costs
« Cost depends on input data and other parameters
— Memory utilization
« Operators only have access to limited amount of memory

— Load balance (for parallel operators)
Magda Balazinska - CSE 444, Spring 2013

Cost Parameters

* In database systems the data is on disk
+ Cost = total number of I/0s

— This is a simplification

— Normally, need to consider 10, CPU, and network
* Parameters:

— B(R) = # of blocks (i.e., pages) for relation R

— T(R) = # of tuples in relation R

— V(R, a) = # of distinct values of attribute a
« When ais a key, V(R,a) = T(R)

* When a is not a key, V(R,a) can be anything < T(R) 2

Cost

+ Cost of an operation = number of disk I/Os to
— Read the operands

— Compute the result

* Cost of writing the result to disk is not included
— Need to count it separately when applicable

Magda Balazinska - CSE 444, Spring 2013

Cost of Scanning a Table

* Result may be unsorted: B(R)

* Result needs to be sorted: 3B(R)
— We will discuss sorting later

Magda Balazinska - CSE 444, Spring 2013 22

Outline

+ Join operator algorithms
— One-pass algorithms (Sec. 15.2 and 15.3)
— Index-based algorithms (Sec 15.6)
— Two-pass algorithms (Sec 15.4 and 15.5)

— Note about readings:
« In class, we will discuss only algorithms for join operator
(because other operators are easier)
« Read the book to get more details about these algos
« Read the book to learn about algos for other operators

Magda Balazinska - CSE 444, Spring 2013 2

Basic Join Algorithms

 Logical operator:

— Product(pname, cname) i Company(cname, city)

Propose three physical operators for the join,
assuming the tables are in main memory:

— Hash join

— Nested loop join

— Sort-merge join

Magda Balazinska - CSE 444, Spring 2013 2

Hash Join

Hash join: RixS

* Scan R, build buckets in main memory
* Then scan S and join

+ Cost: B(R) + B(S)

+ One-pass algorithm when B(R) <= M
— By “one pass”, we mean that the operator reads its
operands only once. It does not write intermediate
results back to disk.
Magda Balazinska - CSE 444, Spring 2013 25

Hash Join Example

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)
Patient >« Insurance

Two tuples
per page

Insurance

‘Blue’
‘Prem’

‘Prem’
‘GrpH’

Hash Join Example -
Patient < Insurance enough nb

Memory M = 21 pages

Showing pid

This is one page
with two tuples

Hash Join Example

Step 1: Scan Patient and create hash table in memory
Memory M = 21 pages

Hash h: pid % 5
[s] J[1Te)l2] I[s[8][a]9]

>
]

Input buffer

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages
Hash h: pid % 5

[s] [lell2] [slsllalsl
2la]

Input buffer

Write to disk or
pass to next
operator

Hash Join Example

Step 2: Scan Insurance and probe into hash table
Memory M = 21 pages

Hash h: pid % 5

[5] [1Tell2] [aTell4To]|
[2]4]

Input buffer Output buffer

Hash Join Example Hash Join Details

Step 2: Scan Insurance and probe into hash table Open(){
Memory M = 21 pages H = newHashTable();
Hash h: pid % 5 R.Open();

5 [Telz] [lelaTe] x = R GelNex(

)
while (x != null) {

H.insert(x); x = R.GetNext();
3] } % 0

Input buffer Output buffer R Close()
Keep going until read all of Insurance S..Open();,
buffer =[1];
Cost: B(R) + B(S) 31 } 2
Hash Join Details Hash Join Details
GetNext() {
while (buffer ==) { Close() {
x = S.GetNext(); release memory (H, buffer, etc.);
if (x==Null) return NULL; S.Close()
buffer = H.find(x); }
}
z = buffer.first();
buffer = buffer.reset();
return z;
}
Magda Balazinska - CSE 444, Spring 2013 33 Magda Balazinska - CSE 444, Spring 2013 34
Nested Loop Joins Page-at-a-time Refinement

* Tuple-based nested loop R S

« Ris the outer relation, S is the inner relation for each page of tuples rin R do

for each page of tuples s in S do
for all pairs of tuples
if rand s join then output (r,s)

for each tuple rin R do
for each tuple s in S do
if rand s join then output (r,s)

- Cost: B(R) + T(R) B(S) + Cost: B(R) + B(R)B(S)

» Not quite one-pass since S is read many times

Magda Balazinska - CSE 444, Spring 2013 35 Magda Balazinska - CSE 444, Spring 2013 36

Nested Loop Example

- Input buffer for Patient

Input buffer for Insurance

Output buffer

Nested Loop Example

- Input buffer for Patient

Input buffer for Insurance

[]

Output buffer

38

Nested Loop Example

- Input buffer for Patient
Input buffer for Insurance

Keep going until read
2

all of Insurance
Then repeat for next Output buffer

page of Patient... until end of Patient

Cost: B(R) + B(R)B(S) 39

Sort-Merge Join

Sort-merge join: RS

* Scan R and sort in main memory
* Scan S and sort in main memory
* Merge Rand S

» Cost: B(R) + B(S)
* One pass algorithm when B(S) + B(R) <=M
» Typically, this is NOT a one pass algorithm

Magda Balazinska - CSE 444, Spring 2013 40

Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

Memory M = 21 pages

a1

Sort-Merge Join Example

Step 2: Scan Insurance and sort in memory
Memory M = 21 pages

[1]2][3]4][s]e][8]9]
[1]2][2]3][3]4][4]6]

42

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

[1]2][3]4][5]e][8]9]
[112][2]3][3]4][4]6]

Output buffer

Sort-Merge Join Example

Step 3: Merge Patient and Insurance

Memory M = 21 pages

43

[1]2](3]4][5]e](8]9]
[112]2]3][3]4][4]s6]

Output buffer

Keep going until end of first relation

44

