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CSE 444: Database Internals 

Lecture 7 
Query Execution and 

Operator Algorithms (part 1) 
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What We Have Learned So Far 

•  Overview of the architecture of a DBMS 
–  Main components (summarized on next slide) 
–  Steps involved in query evaluation 

•  Access methods 
–  Storing data in heap files or sequential files 
–  Indexes (hash or B+ trees) 

•  Role of buffer manager 
•  Interaction of components during query execution 
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DBMS Architecture 
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[Anatomy of a Db System.   
J. Hellerstein & M. Stonebraker.  
Red Book. 4ed.] 3 

What We Will Learn Next 

•  How to answer queries efficiently! 
–  Operator algorithms, especially for joins 
–  How to leverage indexes for selections and joins 
–  How to compute costs of individual operations 

•  How to automatically find good query plans 
–  How to compute the cost of a complete plan? 
–  How to pick a good query plan for a query? 

•  Start by reviewing physical plans 
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Query Evaluation Steps Review 

Parse & Rewrite Query 

Select Logical Plan 

Select Physical Plan 

Query Execution 

Disk 

SQL query 

Query 
optimization 

Logical 
plan 

Physical 
plan 
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Physical Query Plan 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 
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Physical Query Plan 

•  Logical query plan with extra annotations 
•  Access path selection for each relation 

–  Use a file scan or use an index with a predicate 
–  We learned various alternatives in past few lectures 

•  Implementation choice for each operator 
–  We will learn about operator algorithms  

•  Scheduling decisions for operators 
–  Pipelined execution  
–  Or intermediate tuple materialization 
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Iterator Interface 
•  Each operator implements this interface 
•  Interface has only three methods 
•  open() 

–  Initializes operator state 
–  Sets parameters such as selection condition 

•  next() 
–  Operator invokes get_next() recursively on its inputs 
–  Performs processing and produces an output tuple 

•  close(): clean-up state 
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Pipelined Query Execution 

Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 
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open() 

open() 

open() 

open() open() 
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Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2 

π sname 

(File scan) (File scan) 

(Nested loop) 

(On the fly) 

(On the fly) 
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nex() 

next() 

next() 

next() 
next() 

next() 

Pipelined Query Execution 
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Pipelined Execution 

•  Applies parent operator to tuples directly as 
they are produced by child operators 

•  Benefits 
–  No operator synchronization issues 
–  Saves cost of writing intermediate data to disk 
–  Saves cost of reading intermediate data from disk 
–  Good resource utilizations on single processor 

•  This approach is used whenever possible 
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Intermediate Tuple Materialization 

•  Writes the results of an operator to an 
intermediate table on disk 

•  No direct benefit but 
•  Necessary for some operator implementations 
•  When operator needs to examine the same 

tuples multiple times 
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Suppliers Supplies 

sno = sno 

σ sscity=‘Seattle’ ∧sstate=‘WA’ 

π sname 

(File scan) (File scan) 

(Sort-merge join) 

(Scan: write to T2) 

(On the fly) 

σ pno=2 

(Scan: write to T1) 

Intermediate Tuple Materialization 
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Memory Management 

•  Each operator has some pre-allocated space 
for input and output tuples  
–  These are tuples in-flight between operators 
–  These input/output queues either point to base 

data in buffer pool 
–  Or point to new tuples on the heap 

•  Each operator can also allocate separate 
memory for its internal state 
–  Either on heap or buffer pool (depends on system) 
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Memory Management (cont.) 

•  DBMS limits how much memory each 
operator can use 
–  This limit can be configurable 

•  DBMS limits how much memory each query 
can use 
–  This limit can be configurable 
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Query Execution Bottom Line 

•  SQL query transformed into physical plan 
–  Logical query plan with extra annotations 
–  Access path selection for each relation 
–  Implementation choice for each operator 
–  Scheduling decisions for operators 

•  Execution of the physical plan is pull-based 

•  Operators given a limited amount of memory 
16 

Operator Algorithms 
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Why Learn About Op Algos? 
•  Good algorithms can greatly improve performance 

–  Need to know operator algorithms to understand query plans 
–  Need to understand query plans to tune a DBMS 

•  Implemented in commercial DBMSs 
–  DBMSs implement different subsets of known algorithms 

•  Operator costs are first step toward query optimization 

•  Basic ideas to achieve high performance in operators 
go beyond relational operators 
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Operator Algorithms 

•  How to compare implementations/algorithms? 
–  Using a cost model: IO, CPU, (and network bw) 
–  Later, will see how this plays a role in optimization 

•  Some key design criteria 
–  Cost: Different algorithms have different costs 

•  Cost depends on input data and other parameters 

–  Memory utilization 
•  Operators only have access to limited amount of memory 

–  Load balance (for parallel operators) 
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Cost Parameters 

•  In database systems the data is on disk 
•  Cost = total number of I/Os 

–  This is a simplification 
–  Normally, need to consider IO, CPU, and network 

•  Parameters: 
–  B(R) = # of blocks (i.e., pages) for relation R 
–  T(R) = # of tuples in relation R 
–  V(R, a) = # of distinct values of attribute a 

•  When a is a key, V(R,a) = T(R) 
•  When a is not a key, V(R,a) can be anything < T(R) 

20 
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Cost 

•  Cost of an operation = number of disk I/Os to 
–  Read the operands 
–  Compute the result 

•  Cost of writing the result to disk is not included 
–  Need to count it separately when applicable 
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Cost of Scanning a Table 

•  Result may be unsorted:  B(R) 
•  Result needs to be sorted: 3B(R) 

–  We will discuss sorting later 
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Outline 

•  Join operator algorithms 
–  One-pass algorithms (Sec. 15.2 and 15.3) 
–  Index-based algorithms (Sec 15.6) 
–  Two-pass algorithms (Sec 15.4 and 15.5) 

–  Note about readings:  
•  In class, we will discuss only algorithms for join operator 

(because other operators are easier) 
•  Read the book to get more details about these algos 
•  Read the book to learn about algos for other operators 
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Basic Join Algorithms 

•  Logical operator: 
–  Product(pname, cname) ⋈ Company(cname, city) 

•  Propose three physical operators for the join, 
assuming the tables are in main memory: 
–  Hash join 
–  Nested loop join 
–  Sort-merge join 
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Hash Join 

Hash join:  R ⋈ S 
•  Scan R, build buckets in main memory 
•  Then scan S and join 
•  Cost: B(R) + B(S) 

•  One-pass algorithm when B(R) <= M 
–  By “one pass”, we mean that the operator reads its 

operands only once. It does not write intermediate 
results back to disk. 
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Hash Join Example 
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Patient     Insurance  

Patient(pid, name, address) 
Insurance(pid, provider, policy_nb) 

1 ‘Bob’ ‘Seattle’ 
2 ‘Ela’ ‘Everett’ 

3 ‘Jill’ ‘Kent’ 
4 ‘Joe’ ‘Seattle’ 

Patient 
2 ‘Blue’ 123 
4 ‘Prem’ 432 

Insurance 

4 ‘Prem’ 343 
3 ‘GrpH’ 554 

Two tuples 
per page 

Hash Join Example 
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Patient     Insurance  

1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

Showing pid 
only 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

Some large-
enough nb 

This is one page 
with two tuples 

Hash Join Example 
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Step 1: Scan Patient and create hash table in memory 

1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 
Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 

Hash Join Example 
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Step 2: Scan Insurance and probe into hash table 

1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 
Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 2 4 
Output buffer 
2 2 

Write to disk or 
pass to next 

operator 

Hash Join Example 
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Step 2: Scan Insurance and probe into hash table 

1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 
Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 2 4 
Output buffer 
4 4 
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Hash Join Example 
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Step 2: Scan Insurance and probe into hash table 

1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 
Hash h: pid % 5 

Input buffer 

1 2 4 3 9 6 8 5 

1 2 4 3 
Output buffer 
4 4 

Keep going until read all of Insurance 

Cost: B(R) + B(S) 

Hash Join Details 
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Open( ) { 
  H = newHashTable( ); 
  R.Open( ); 
  x = R.GetNext( ); 
  while (x != null) {  

 H.insert(x); x = R.GetNext( ); 
  } 
  R.Close( ); 
  S.Open( ); 
  buffer = [ ]; 
} 

Hash Join Details 
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GetNext( ) { 
  while (buffer == [ ]) { 
        x = S.GetNext( ); 
        if (x==Null) return NULL; 
        buffer = H.find(x); 
  } 
  z = buffer.first( ); 
  buffer = buffer.reset( ); 
  return z; 
} 
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Hash Join Details 
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Close( ) { 
    release memory (H, buffer, etc.); 
    S.Close( ) 
} 
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Nested Loop Joins 
•  Tuple-based nested loop R ⋈ S 
•  R is the outer relation, S is the inner relation 

 

 
•  Cost: B(R) + T(R) B(S) 
•  Not quite one-pass since S is read many times 

for each tuple r in R do 
   for each tuple s in S do 
       if r and s join then output (r,s) 
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Page-at-a-time Refinement 

•  Cost: B(R) + B(R)B(S) 

for each page of tuples r in R do 
   for each page of tuples s in S do 

 for all pairs of tuples 
  if r and s join then output (r,s) 
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Nested Loop Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 

Output buffer 
2 2 

Input buffer for Insurance 2 4 

Nested Loop Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 1 2 

Output buffer 

Input buffer for Insurance 4 3 

1 2 

Nested Loop Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Input buffer for Patient 1 2 

Output buffer 

Input buffer for Insurance 2 8 

1 2 

2 2 

Cost: B(R) + B(R)B(S) 

Keep going until read  
all of Insurance 
Then repeat for next  
page of Patient… until end of Patient 
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Sort-Merge Join 

Sort-merge join:  R ⋈ S 
•  Scan R and sort in main memory 
•  Scan S and sort in main memory 
•  Merge R and S 

•  Cost: B(R) + B(S) 
•  One pass algorithm when B(S) + B(R) <= M 
•  Typically, this is NOT a one pass algorithm 
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Sort-Merge Join Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 1: Scan Patient and sort in memory 
Sort-Merge Join Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 2: Scan Insurance and sort in memory 

1 2 3 4 

6 8 8 9 

2 3 4 6 
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Sort-Merge Join Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 3: Merge Patient and Insurance 

1 2 3 4 

6 8 8 9 

2 3 4 6 

Output buffer 
1 1 

Sort-Merge Join Example 
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1 2 
3 4 

Patient 
2 4 

Insurance 

4 3 

8 5 

9 6 2 8 

8 9 

6 6 

1 3 

Disk 

Memory M = 21 pages 

1 2 4 3 9 6 8 5 

Step 3: Merge Patient and Insurance 

1 2 3 4 

6 8 8 9 

2 3 4 6 

Output buffer 
2 2 

Keep going until end of first relation 


