
1

CSE 444: Database Internals

Lecture 7
Query Execution and

Operator Algorithms (part 1)

1 Magda Balazinska - CSE 444, Spring 2013

What We Have Learned So Far

•  Overview of the architecture of a DBMS
–  Main components (summarized on next slide)
–  Steps involved in query evaluation

•  Access methods
–  Storing data in heap files or sequential files
–  Indexes (hash or B+ trees)

•  Role of buffer manager
•  Interaction of components during query execution

Magda Balazinska - CSE 444, Spring 2013 2

DBMS Architecture

Process Manager

Admission Control

Connection Mgr

Query Processor

Parser

Query Rewrite

Optimizer

Executor

Storage Manager

Access Methods

Lock Manager

Buffer Manager

Log Manager

Shared Utilities

Memory Mgr

Disk Space Mgr

Replication Services

Admin Utilities

[Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Red Book. 4ed.] 3

What We Will Learn Next

•  How to answer queries efficiently!
–  Operator algorithms, especially for joins
–  How to leverage indexes for selections and joins
–  How to compute costs of individual operations

•  How to automatically find good query plans
–  How to compute the cost of a complete plan?
–  How to pick a good query plan for a query?

•  Start by reviewing physical plans

 Magda Balazinska - CSE 444, Spring 2013 4

Query Evaluation Steps Review

Parse & Rewrite Query

Select Logical Plan

Select Physical Plan

Query Execution

Disk

SQL query

Query
optimization

Logical
plan

Physical
plan

5 Magda Balazinska - CSE 444, Spring 2013

Physical Query Plan

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

6

2

Magda Balazinska - CSE 444, Spring 2013

Physical Query Plan

•  Logical query plan with extra annotations
•  Access path selection for each relation

–  Use a file scan or use an index with a predicate
–  We learned various alternatives in past few lectures

•  Implementation choice for each operator
–  We will learn about operator algorithms

•  Scheduling decisions for operators
–  Pipelined execution
–  Or intermediate tuple materialization

7 Magda Balazinska - CSE 444, Spring 2013

Iterator Interface
•  Each operator implements this interface
•  Interface has only three methods
•  open()

–  Initializes operator state
–  Sets parameters such as selection condition

•  next()
–  Operator invokes get_next() recursively on its inputs
–  Performs processing and produces an output tuple

•  close(): clean-up state
8

Magda Balazinska - CSE 444, Spring 2013

Pipelined Query Execution

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

9

open()

open()

open()

open() open()

Magda Balazinska - CSE 444, Spring 2013

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

10

nex()

next()

next()

next()
next()

next()

Pipelined Query Execution

Magda Balazinska - CSE 444, Spring 2013

Pipelined Execution

•  Applies parent operator to tuples directly as
they are produced by child operators

•  Benefits
–  No operator synchronization issues
–  Saves cost of writing intermediate data to disk
–  Saves cost of reading intermediate data from disk
–  Good resource utilizations on single processor

•  This approach is used whenever possible

11 Magda Balazinska - CSE 444, Spring 2013

Intermediate Tuple Materialization

•  Writes the results of an operator to an
intermediate table on disk

•  No direct benefit but
•  Necessary for some operator implementations
•  When operator needs to examine the same

tuples multiple times

12

3

Magda Balazinska - CSE 444, Spring 2013

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’

π sname

(File scan) (File scan)

(Sort-merge join)

(Scan: write to T2)

(On the fly)

σ pno=2

(Scan: write to T1)

Intermediate Tuple Materialization

13

Memory Management

•  Each operator has some pre-allocated space
for input and output tuples
–  These are tuples in-flight between operators
–  These input/output queues either point to base

data in buffer pool
–  Or point to new tuples on the heap

•  Each operator can also allocate separate
memory for its internal state
–  Either on heap or buffer pool (depends on system)

Magda Balazinska - CSE 444, Spring 2013 14

Memory Management (cont.)

•  DBMS limits how much memory each
operator can use
–  This limit can be configurable

•  DBMS limits how much memory each query
can use
–  This limit can be configurable

Magda Balazinska - CSE 444, Spring 2013 15 Magda Balazinska - CSE 444, Spring 2013

Query Execution Bottom Line

•  SQL query transformed into physical plan
–  Logical query plan with extra annotations
–  Access path selection for each relation
–  Implementation choice for each operator
–  Scheduling decisions for operators

•  Execution of the physical plan is pull-based

•  Operators given a limited amount of memory
16

Operator Algorithms

Magda Balazinska - CSE 444, Spring 2013 17

Why Learn About Op Algos?
•  Good algorithms can greatly improve performance

–  Need to know operator algorithms to understand query plans
–  Need to understand query plans to tune a DBMS

•  Implemented in commercial DBMSs
–  DBMSs implement different subsets of known algorithms

•  Operator costs are first step toward query optimization

•  Basic ideas to achieve high performance in operators
go beyond relational operators

Magda Balazinska - CSE 444, Spring 2013 18

4

Operator Algorithms

•  How to compare implementations/algorithms?
–  Using a cost model: IO, CPU, (and network bw)
–  Later, will see how this plays a role in optimization

•  Some key design criteria
–  Cost: Different algorithms have different costs

•  Cost depends on input data and other parameters

–  Memory utilization
•  Operators only have access to limited amount of memory

–  Load balance (for parallel operators)
Magda Balazinska - CSE 444, Spring 2013 19

Cost Parameters

•  In database systems the data is on disk
•  Cost = total number of I/Os

–  This is a simplification
–  Normally, need to consider IO, CPU, and network

•  Parameters:
–  B(R) = # of blocks (i.e., pages) for relation R
–  T(R) = # of tuples in relation R
–  V(R, a) = # of distinct values of attribute a

•  When a is a key, V(R,a) = T(R)
•  When a is not a key, V(R,a) can be anything < T(R)

20

Magda Balazinska - CSE 444, Spring 2013

Cost

•  Cost of an operation = number of disk I/Os to
–  Read the operands
–  Compute the result

•  Cost of writing the result to disk is not included
–  Need to count it separately when applicable

21 Magda Balazinska - CSE 444, Spring 2013

Cost of Scanning a Table

•  Result may be unsorted: B(R)
•  Result needs to be sorted: 3B(R)

–  We will discuss sorting later

22

Magda Balazinska - CSE 444, Spring 2013

Outline

•  Join operator algorithms
–  One-pass algorithms (Sec. 15.2 and 15.3)
–  Index-based algorithms (Sec 15.6)
–  Two-pass algorithms (Sec 15.4 and 15.5)

–  Note about readings:
•  In class, we will discuss only algorithms for join operator

(because other operators are easier)
•  Read the book to get more details about these algos
•  Read the book to learn about algos for other operators

23 Magda Balazinska - CSE 444, Spring 2013

Basic Join Algorithms

•  Logical operator:
–  Product(pname, cname) ⋈ Company(cname, city)

•  Propose three physical operators for the join,
assuming the tables are in main memory:
–  Hash join
–  Nested loop join
–  Sort-merge join

24

5

Magda Balazinska - CSE 444, Spring 2013

Hash Join

Hash join: R ⋈ S
•  Scan R, build buckets in main memory
•  Then scan S and join
•  Cost: B(R) + B(S)

•  One-pass algorithm when B(R) <= M
–  By “one pass”, we mean that the operator reads its

operands only once. It does not write intermediate
results back to disk.

25

Hash Join Example

26

Patient Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy_nb)

1 ‘Bob’ ‘Seattle’
2 ‘Ela’ ‘Everett’

3 ‘Jill’ ‘Kent’
4 ‘Joe’ ‘Seattle’

Patient
2 ‘Blue’ 123
4 ‘Prem’ 432

Insurance

4 ‘Prem’ 343
3 ‘GrpH’ 554

Two tuples
per page

Hash Join Example

27

Patient Insurance

1 2
3 4

Patient
2 4

Insurance

4 3

Showing pid
only

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

Some large-
enough nb

This is one page
with two tuples

Hash Join Example

28

Step 1: Scan Patient and create hash table in memory

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2

Hash Join Example

29

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
2 2

Write to disk or
pass to next

operator

Hash Join Example

30

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 2 4
Output buffer
4 4

6

Hash Join Example

31

Step 2: Scan Insurance and probe into hash table

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages
Hash h: pid % 5

Input buffer

1 2 4 3 9 6 8 5

1 2 4 3
Output buffer
4 4

Keep going until read all of Insurance

Cost: B(R) + B(S)

Hash Join Details

32

Open() {
 H = newHashTable();
 R.Open();
 x = R.GetNext();
 while (x != null) {

 H.insert(x); x = R.GetNext();
 }
 R.Close();
 S.Open();
 buffer = [];
}

Hash Join Details

33

GetNext() {
 while (buffer == []) {
 x = S.GetNext();
 if (x==Null) return NULL;
 buffer = H.find(x);
 }
 z = buffer.first();
 buffer = buffer.reset();
 return z;
}

Magda Balazinska - CSE 444, Spring 2013

Hash Join Details

34

Close() {
 release memory (H, buffer, etc.);
 S.Close()
}

Magda Balazinska - CSE 444, Spring 2013

Magda Balazinska - CSE 444, Spring 2013

Nested Loop Joins
•  Tuple-based nested loop R ⋈ S
•  R is the outer relation, S is the inner relation

•  Cost: B(R) + T(R) B(S)
•  Not quite one-pass since S is read many times

for each tuple r in R do
 for each tuple s in S do
 if r and s join then output (r,s)

35 Magda Balazinska - CSE 444, Spring 2013

Page-at-a-time Refinement

•  Cost: B(R) + B(R)B(S)

for each page of tuples r in R do
 for each page of tuples s in S do

 for all pairs of tuples
 if r and s join then output (r,s)

36

7

1 2

Nested Loop Example

37

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient

Output buffer
2 2

Input buffer for Insurance 2 4

Nested Loop Example

38

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 4 3

1 2

Nested Loop Example

39

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Input buffer for Patient 1 2

Output buffer

Input buffer for Insurance 2 8

1 2

2 2

Cost: B(R) + B(R)B(S)

Keep going until read
all of Insurance
Then repeat for next
page of Patient… until end of Patient

Magda Balazinska - CSE 444, Spring 2013

Sort-Merge Join

Sort-merge join: R ⋈ S
•  Scan R and sort in main memory
•  Scan S and sort in main memory
•  Merge R and S

•  Cost: B(R) + B(S)
•  One pass algorithm when B(S) + B(R) <= M
•  Typically, this is NOT a one pass algorithm

40

Sort-Merge Join Example

41

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 1: Scan Patient and sort in memory
Sort-Merge Join Example

42

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 2: Scan Insurance and sort in memory

1 2 3 4

6 8 8 9

2 3 4 6

8

Sort-Merge Join Example

43

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
1 1

Sort-Merge Join Example

44

1 2
3 4

Patient
2 4

Insurance

4 3

8 5

9 6 2 8

8 9

6 6

1 3

Disk

Memory M = 21 pages

1 2 4 3 9 6 8 5

Step 3: Merge Patient and Insurance

1 2 3 4

6 8 8 9

2 3 4 6

Output buffer
2 2

Keep going until end of first relation

