CSE 444: Database Internals

Lectures 5-6
Indexing

Magda Balazinska - CSE 444, Spring 2013 1

Homework 1 Turn in

Please turn in either:

— A hard copy before the end of Sudeepa'’s office
hour today (4:30pm-5:30pm).
— OR a digital copy by the end of today online

Magda Balazinska - CSE 444, Spring 2013 2

Access Methods

Last lecture, we learned that:
« A DBMS stores data on disk by breaking it into pages
— A page is the size of a disk block.
— A page is the unit of disk IO
« Buffer manager caches these pages in memory
« Access methods do the following:
— They organize pages into collections called DB files
— They organize data inside pages
— They provide an API for operators to access data in these files
« We discussed OS vs DBMS files and buffer manager

Magda Balazinska - CSE 444, Spring 2013 3

Access Methods

* Operators: Process data

Operators: Sequential Scan, etc. \ « Access methods:

Query Processor Organize data to support

fast access to desired

Access Methods: HeapFile, etc.]| Subsets of records

+ Buffer manager: Caches

Storage Manager data in memory. Reads/

writes data to/from disk as

Disk Space Mgr needed

» Disk-space manager:

Allocates space on disk
for files/access methods
4

[—
Data on disk

Query Execution
How it all Fits Together

(On the fly) ot

open()
(On the ﬂy) o sscity='Seattle’ nsstate="WA’ A pno=2

open()
SNO = sno

open()/ \)pen()

Suppliers Supplies

(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 5

(Nested loop)

Query Execution
How it all Fits Together

nex()

(On the fly) T sname

next()

(On the ﬂY) o sscity='Seattle’ rsstate="WA' A pno=2

next()

(Nested loop)

sno = sno

next()
next()/ \next()

Suppliers Supplies
(File scan) (File scan)
Magda Balazinska - CSE 444, Spring 2013 6

Query Execution
. How it all Fits Together
open

nex
S() S Operator at
eqgscan bottom of plan

open() In SimpleDB, SeqScan can
nex() find HeapFile in Catalogue
Heap File Access Method

Offers iterator interface But if Heap File reads data

. directly from disk, it will not
open() stay cached in Buffer Pool!

* next()

+ close()

Knows how to read/write pages from disk

Magda Balazinska - CSE 444, Spring 2013 7

Query Execution
How it all Fits Together

Everyone shares
a single cache

HeapFile HeapFile2
Iterator interface
+ open() Buffer

. next() ’ Pool HeapFile3
+ close() Manager
}1— HeapFileN

Read/write pages from disk
Heap files for

other relations

Data on disk: OS Files

Basic Access Method: Heap File

API

» Create or destroy a file

* Insert a record

* Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid

— Not necessary for sequential scan operator
— But used with indexes

» Scan all records in the file

Magda Balazinska - CSE 444, Spring 2013 9

But Often Also Want....

Scan all records in the file that match a
predicate of the form attribute op value
— Example: Find all students with GPA > 3.5

Critical to support such requests efficiently

— Why read all data form disk when we only need a
small fraction of that data?

« This lecture and next, we will learn how

Magda Balazinska - CSE 444, Spring 2013 10

Searching in a Heap File

File is not sorted on any attribute
Student (sid: int, age: int, ..)

1 record

}— 1 page

Magda Balazinska - CSE 444, Spring 2013 1

Heap File Search Example

* 10,000 students
« 10 student records per page
» Total number of pages: 1,000 pages
+ Find student whose sid is 80
— Must read on average 500 pages

» Find all students older than 20
— Must read all 1,000 pages

» Can we do better?

Magda Balazinska - CSE 444, Spring 2013 12

Sequential File

File sorted on an attribute, usually on primary key
Student (sid: int, age: int, ..)

Magda Balazinska - CSE 444, Spring 2013 13

Sequential File Example

Total number of pages: 1,000 pages

Find student whose sid is 80

— Could do binary search, read log,(1,000) = 10 pages
Find all students older than 20

— Must still read all 1,000 pages

» Can we do even better?

* Note: Sorted files are inefficient for inserts/deletes

Magda Balazinska - CSE 444, Spring 2013 14

Outline

* Index structures Tod
. oada’
* Hash-based indexes v
« B+ trees } Next time

Magda Balazinska - CSE 444, Spring 2013 15

Indexes

» Index: data structure that organizes data records on disk to optimize
selections on the search key fields for the index

+ Anindex contains a collection of data entries, and supports efficient
retrieval of all data entries with a given search key value k

* Indexes are also access methods!
— So they provide the same AP as we have seen for Heap Files
— And efficiently support scans over tuples matching a predicate on the search key

Magda Balazinska - CSE 444, Spring 2013 16

Indexes

» Search key = can be any set of fields
— not the same as the primary key, nor a key
* Index = collection of data entries
« Data entry for key k can be:
— The actual record with key k

« In this case, the index is also a special file organization
« Called: “indexed file organization”

- (k, RID)
— (k, list-of-RIDs)

Magda Balazinska - CSE 444, Spring 2013 17

Different Types of Files

» For the data inside base relations:
— Heap file (tuples stored without any order)
— Sequential file (tuples sorted some attribute(s))
— Indexed file (tuples organized following an index)
* Then we can have additional index files that
store (key,rid) pairs
* Index can also be a “covering index”
— Index contains (search key + other attributes, rid)
— Index suffices to answer some queries

Magda Balazinska - CSE 444, Spring 2013 18

Primary Index

+ Primary index determines location of indexed records
« Dense index: sequence of (key,rid) pairs

Index File Data File (Sequential file)

1 data entry — o o

B
1 page ::
®

i

|

0

yAVANII]

Magda Balazinska - CSE 444, Spring 2013 19

Primary Index

Sparse index

—— N —
= EN S

Magda Balazinska - CSE 444, Spring 2013 20

Primary Index
with Duplicate Keys

» Sparse index: pointer to lowest search key on
each page: Example search for 20

...but
need to
search
here too

o |

(2 T E

Magda Balazinska - CSE 444, Spring 2013 21

Primary Index
with Duplicate Keys

* Better: pointer to lowest new search key on

each page:

e]

1A

»
w = ..ok to
search

= from here

Magda Balazinska - CSE 444, Spring 2013 22

Primary Index
with Duplicate Keys

* Dense index:

Magda Balazinska - CSE 444, Spring 2013 2

Primary Index: Back to Example
Let's assume all pages of index fit in memory

Find student whose sid is 80

— Index (dense or sparse) points directly to the page
— Only need to read 1 page from disk.

Find all students older than 20

— Must still read all 1,000 pages.

How can we make both queries fast?

Magda Balazinska - CSE 444, Spring 2013 2

Secondary Indexes

+ To index other attributes than primary key
» Always dense (why ?)

m THE
0 ERE
RN
0 ERE
PR
=
z 50 22
il ~ 60 18
=T
CRE
w0 |19
Magda Balazinska - CSE 444, Spring 2013 25

Clustered vs.
Unclustered Index

Data entries
Data entries

45— 55 i SO S

Data Records

CLUSTERED UNCLUSTERED
Clustered = records close in index are close in data

Magda Balazinska - CSE 444, Spring 2013 26

Clustered/Unclustered

* Primary index = clustered by definition
+ Secondary indexes = usually unclustered

Magda Balazinska - CSE 444, Spring 2013 27

Secondary Indexes

« Applications
— Index other attributes than primary key
— Index unsorted files (heap files)

— Index files that hold data from two relations
« Called “clustered file”
« Notice the different use of the term “clustered”!

Magda Balazinska - CSE 444, Spring 2013 28

Index Classification Summary

Primary/secondary
— Primary = determines the location of indexed records
— Secondary = cannot reorder data, does not determine data location

Dense/sparse

— Dense = every key in the data appears in the index

— Sparse = the index contains only some keys
Clustered/unclustered

— Clustered = records close in index are close in data

— Unclustered = records close in index may be far in data

B+ tree / Hash table / ...

Magda Balazinska - CSE 444, Spring 2013 29

Large Indexes
* What if index does not fit in memory?

* Would like to index the index itself
— Hash-based index
— Tree-based index

Magda Balazinska - CSE 444, Spring 2013 30

Hash-Based Index

Good for point queries but not range queries

h2(age) = 00

— E .

o ERE h1(sid) = 00

= [=N

age = EED
w |1
h2(age) = 01 9 b sid

ERE

w0 |18

h1(sid) = 11
CRE
w |1
Secondary

hash-based index Primary hash-based index

Magda Balazinska - CSE 444, Spring 2013 31

Tree-Based Index
* How many index levels do we need?

Can we create them automatically? Yes!
Can do something even more powerful!

Magda Balazinska - CSE 444, Spring 2013 32

B+ Trees
» Search trees

* Ideain B Trees
— Make 1 node = 1 page (= 1 block)
— Keep tree balanced in height

* |dea in B+ Trees
— Make leaves into a linked list : facilitates range queries

Magda Balazinska - CSE 444, Spring 2013 33

B+ Trees

Data entries
Data entries

T i Nt

Data Records Data Records

CLUSTERED UNCLUSTERED

Note: can also store data records directly as data entries

Magda Balazinska - CSE 444, Spring 2013 34

B+ Trees Basics

Parameter d = the degree
Each node has d <= m <= 2d keys (except root)
Each node also
has m+1 pointers
Keysk<30 1 ovs 30<sket20 Keys 120<=k<240 Keys 240<=k

Each leaf has d <= m <= 2d keys:

ENENEN
!n-- Next leaf
Data records
Magda Balazinska - CSE 444, Spring 2013 35

B+ Tree Example

Find the key 40

20 | 60 100 | 120 | 140

20§40 < 60

\
IR | 20 30| 40 | s0 0

I
I,M \\ /\.M\\ M

o LLML; : é 4

Magda Balazinska - CSE 444, Spring 2013 36

65 80 | 85] 90

Searching a B+ Tree

+ Exact key values:
— Start at the root
— Proceed down, to the leaf

Select name
From Student
Where age = 25

* Range queries:

Select name

From Student

Where 20 <= age
and age <= 30

— Find lowest bound as above
— Then sequential traversal

Magda Balazinska - CSE 444, Spring 2013 37

B+ Tree Design

* How large d ?
« Example:
— Key size = 4 bytes
— Pointer size = 8 bytes
— Block size = 4096 bytes
2d x4 +(2d+1)x 8 <= 4096
d=170

Magda Balazinska - CSE 444, Spring 2013

B+ Trees in Practice

+ Typical order: 100. Typical fill-factor: 67%.
— average fanout = 133

» Typical capacities
— Height 4: 1334 = 312,900,700 records
— Height 3: 1333 = 2,352,637 records

» Can often hold top levels in buffer pool
— Level 1= 1 page = 8 Kbytes
—Level2= 133 pages= 1 Mbyte
— Level 3 = 17,689 pages = 133 Mbytes

Magda Balazinska - CSE 444, Spring 2013 39

Insertion in a B+ Tree

Insert (K, P)
Find leaf where K belongs, insert
If no overflow (2d keys or less), halt
If overflow (2d+1 keys), split node, insert in parent:

parent parent
K3

I |

P\‘PJ‘(’S‘

If leaf, also keep K3 in right node
+ When root splits, new root has 1 key only

Magda Balazinska - CSE 444, Spring 2013 40

Insertion in a B+ Tree
Insert K=19

(o T T 1

|20‘6U‘ ‘ | |1ou‘|zu‘|4u‘ |

20 30 | 40 | s0 |m‘ﬁ;‘ ‘ ||xn

I
LT H-’/\.\\\\H.\\\ E/AAVINE 2

Magda Balazinska - CSE 444, Spring 2013 41

Insertion in a B+ Tree
After insertion

18

|m‘\5

ul 20 30| 40 | 50 0

ERERED

l‘l‘\‘\‘ |‘\‘ ‘/‘

ELL\EM : é 4

Magda Balazinska - CSE 444, Spring 2013 42

Insertion in a B+ Tree
Now insert 25

EN .

| 20 ‘ 60 ‘ ‘ | | 100 ‘ |zn‘ 140 ‘ |
| 10 ‘ Is ‘ I8 ‘ 19 | 20 [30| 40 | s0 | ‘ ‘ s0 ‘ % ‘ |
i ‘ \ ‘\ O] H/ /
Magda Balazinska - CSE 444, Spring 2013 43

Insertion in a B+ Tree

But now have to split !

2l [|
AINENEE

|1ou‘|:u‘|4u‘ |

|m‘|¢‘|x‘w| 20

30 ‘ 40

5u| | w | 6 50 | 85] o

.\\\ H-I/\ M

Lﬂléé

Magda Balazinska - CSE 444, Spring 2013 45

Deletion from a B+ Tree
Delete 30

(o T T 1

| 100 ‘ |zu‘ 140 ‘

I
ML J L]

\ \\

65

s |mx xn‘ws‘un‘ |
,\.\ \ H—Iy\ IE K ya A 5

NivZe

Magda Balazinska - CSE 444, Spring 2013 47

Insertion in a B+ Tree

After insertion

20 | 60 100 | 120 | 140

| 10 ‘ \s‘ 18 ‘ nl 0 [25| 30 |40 s0 60 | 65 | 0 ‘ 85 ‘ %0

[]
,\.\\\\M—h\\\ \ AR

L

Magda Balazinska - CSE 444, Spring 2013 44

Insertion in a B+ Tree
After the split

\\‘

20 ‘ 25 | 0 | a0 | s w | 6 50 | 85 | o0 |

|‘|‘ ‘H’/ '|‘\‘ ‘/‘

AL w{ LL{ 7 b

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
After deleting 30

May change to
40, or not

/\\\ \\

20 ‘ 25 ” ERIE] 60

,\.\ H—M 3

Winw, xmﬁ

Magda Balazinska - CSE 444, Spring 2013

D

Deletion from a B+ Tree

Now delete 25
(o T []
|2n‘m‘(n‘ | |mo‘|zn‘|4n‘ |
AINENENE L I L]

\II”’ 1]

S

,\.\ E7INE T M

Ny ANV

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
After deleting 25
Need to rebalance
Rotate

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree

Now delete 40
(=T T T]
|I0‘}U‘6U‘ | |1ou‘|u‘|4u‘
N 4\|
19 zu‘ ‘) ‘ w0 | 65 50]85] 90
PEENE YN \-.\\\ el L]

.L{éé

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
After deleting 40

\
2\
I |sn‘ ‘ ‘ 0 | 65 50 | 85 | %0 |
/ J—H\\ \ \-.\\\ \/\

““““““ M i

Magda Balazinska - CSE 444, Spring 2013 52

Deletion from a B+ Tree

Final tree

(o T T 1

|1ou‘|zu‘|4u‘ |

50] ss] 90

\\\ M

]

@k{éé

Magda Balazinska - CSE 444, Spring 2013

Summary on B+ Trees

» Default index structure on most DBMSs

+ Very effective at answering ‘point’ queries:
productName = ‘gizmo’

« Effective for range queries:
50 < price AND price < 100

* Less effective for multirange:
50 < price <100 AND 2 < quant <20

Magda Balazinska - CSE 444, Spring 2013 54

+ Let's take a look at another example of an

index....

+ The following will not be on the midterm/final

Optional Material

Magda Balazinska - CSE 444, Spring 2013

55

R-Tree Example

Designed for spatial data .
Search key values are bounding boxes

IENNEEN
[a] [a]

R3 R4 R6
ENEINEIN R NN
[a]

o] [Re] [re] [re] [r7]

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

Magda Balazinska - CSE 444, Spring 2013 56

10

