
1

CSE 444: Database Internals

Lectures 5-6
Indexing

1 Magda Balazinska - CSE 444, Spring 2013

Homework 1 Turn in

Please turn in either:
–  A hard copy before the end of Sudeepa’s office

hour today (4:30pm-5:30pm).
–  OR a digital copy by the end of today online

Magda Balazinska - CSE 444, Spring 2013 2

Access Methods

Last lecture, we learned that:
•  A DBMS stores data on disk by breaking it into pages

–  A page is the size of a disk block.
–  A page is the unit of disk IO

•  Buffer manager caches these pages in memory
•  Access methods do the following:

–  They organize pages into collections called DB files
–  They organize data inside pages
–  They provide an API for operators to access data in these files

•  We discussed OS vs DBMS files and buffer manager
Magda Balazinska - CSE 444, Spring 2013 3

Access Methods

Query Processor

Storage Manager

Access Methods: HeapFile, etc.

Buffer Manager

4

Operators: Sequential Scan, etc.

Data on disk

•  Operators: Process data
•  Access methods:

Organize data to support
fast access to desired
subsets of records

•  Buffer manager: Caches
data in memory. Reads/
writes data to/from disk as
needed

•  Disk-space manager:
Allocates space on disk
for files/access methods

 Disk Space Mgr

Magda Balazinska - CSE 444, Spring 2013

Query Execution
How it all Fits Together

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

5

open()

open()

open()

open() open()

Magda Balazinska - CSE 444, Spring 2013

Suppliers Supplies

sno = sno

σ sscity=‘Seattle’ ∧sstate=‘WA’ ∧ pno=2

π sname

(File scan) (File scan)

(Nested loop)

(On the fly)

(On the fly)

6

nex()

next()

next()

next()
next()

next()

Query Execution
How it all Fits Together

2

Magda Balazinska - CSE 444, Spring 2013 7

Query Execution
How it all Fits Together

SeqScan Operator at
bottom of plan

Heap File Access Method

In SimpleDB, SeqScan can
find HeapFile in Catalogue

open()

open()

Offers iterator interface
•  open()
•  next()
•  close()
Knows how to read/write pages from disk

nex()

nex()

But if Heap File reads data
directly from disk, it will not
stay cached in Buffer Pool!

HeapFile

 Buffer

Pool
Manager

8
Data on disk: OS Files

Iterator interface
•  open()
•  next()
•  close()
Read/write pages from disk

Query Execution
How it all Fits Together

Everyone shares
a single cache

HeapFile2

HeapFile3

HeapFileN

Heap files for
other relations

Basic Access Method: Heap File

API
•  Create or destroy a file
•  Insert a record
•  Delete a record with a given rid (rid)

–  rid: unique tuple identifier (more later)

•  Get a record with a given rid
–  Not necessary for sequential scan operator
–  But used with indexes

•  Scan all records in the file
Magda Balazinska - CSE 444, Spring 2013 9

But Often Also Want….

•  Scan all records in the file that match a
predicate of the form attribute op value
–  Example: Find all students with GPA > 3.5

•  Critical to support such requests efficiently
–  Why read all data form disk when we only need a

small fraction of that data?

•  This lecture and next, we will learn how
Magda Balazinska - CSE 444, Spring 2013 10

Magda Balazinska - CSE 444, Spring 2013

Searching in a Heap File

30 18 …

70 21

20 20

40 19

80 19

60 18

10 21

50 22

File is not sorted on any attribute
Student(sid: int, age: int, …)

1 record

1 page

11 Magda Balazinska - CSE 444, Spring 2013

Heap File Search Example

•  10,000 students
•  10 student records per page
•  Total number of pages: 1,000 pages
•  Find student whose sid is 80

–  Must read on average 500 pages

•  Find all students older than 20
–  Must read all 1,000 pages

•  Can we do better?

12

3

Magda Balazinska - CSE 444, Spring 2013

Sequential File

10 21 …

20 20

30 18

40 19

50 22

60 18

70 21

80 19

File sorted on an attribute, usually on primary key
Student(sid: int, age: int, …)

13 Magda Balazinska - CSE 444, Spring 2013

Sequential File Example
•  Total number of pages: 1,000 pages
•  Find student whose sid is 80

–  Could do binary search, read log2(1,000) ≈ 10 pages

•  Find all students older than 20
–  Must still read all 1,000 pages

•  Can we do even better?

•  Note: Sorted files are inefficient for inserts/deletes

14

Magda Balazinska - CSE 444, Spring 2013

Outline

•  Index structures
•  Hash-based indexes
•  B+ trees

15

Today

Next time

Magda Balazinska - CSE 444, Spring 2013

Indexes

•  Index: data structure that organizes data records on disk to optimize
selections on the search key fields for the index

•  An index contains a collection of data entries, and supports efficient
retrieval of all data entries with a given search key value k

•  Indexes are also access methods!
–  So they provide the same API as we have seen for Heap Files

–  And efficiently support scans over tuples matching a predicate on the search key

16

Magda Balazinska - CSE 444, Spring 2013

Indexes

•  Search key = can be any set of fields
–  not the same as the primary key, nor a key

•  Index = collection of data entries
•  Data entry for key k can be:

–  The actual record with key k
•  In this case, the index is also a special file organization
•  Called: “indexed file organization”

–  (k, RID)
–  (k, list-of-RIDs)

17

Different Types of Files

•  For the data inside base relations:
–  Heap file (tuples stored without any order)
–  Sequential file (tuples sorted some attribute(s))
–  Indexed file (tuples organized following an index)

•  Then we can have additional index files that
store (key,rid) pairs

•  Index can also be a “covering index”
–  Index contains (search key + other attributes, rid)
–  Index suffices to answer some queries

Magda Balazinska - CSE 444, Spring 2013 18

4

Magda Balazinska - CSE 444, Spring 2013

Primary Index
•  Primary index determines location of indexed records
•  Dense index: sequence of (key,rid) pairs

10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

1 data entry

1 page

Index File Data File (Sequential file)

19 Magda Balazinska - CSE 444, Spring 2013

Primary Index

•  Sparse index

10

30

50

70

90

110

130

150

10

20

30

40

50

60

70

80

20

Magda Balazinska - CSE 444, Spring 2013

Primary Index
with Duplicate Keys

•  Sparse index: pointer to lowest search key on
each page: Example search for 20

10

10

20

30

10

10

10

20

20

20

30

40

20 is
here...

...but
need to
search

here too

21 Magda Balazinska - CSE 444, Spring 2013

•  Better: pointer to lowest new search key on
each page:

•  Search for 15 ? 35 ?

Primary Index
with Duplicate Keys

10

20

30

40

50

60

70

80

10

10

10

20

30

30

40

50

20 is
here...

...ok to
search

from here

30

30

22

Magda Balazinska - CSE 444, Spring 2013

Primary Index
with Duplicate Keys

•  Dense index:

10

20

30

40

50

60

70

80

10

10

10

20

20

20

30

40

23 Magda Balazinska - CSE 444, Spring 2013

Primary Index: Back to Example

•  Let’s assume all pages of index fit in memory

•  Find student whose sid is 80
–  Index (dense or sparse) points directly to the page
–  Only need to read 1 page from disk.

•  Find all students older than 20
–  Must still read all 1,000 pages.

•  How can we make both queries fast?

24

5

Magda Balazinska - CSE 444, Spring 2013

Secondary Indexes
•  To index other attributes than primary key
•  Always dense (why ?)

18

18

19

19

20

21

21

22

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

25 Magda Balazinska - CSE 444, Spring 2013

Clustered vs.
Unclustered Index

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

 Clustered = records close in index are close in data

26

Magda Balazinska - CSE 444, Spring 2013

Clustered/Unclustered

•  Primary index = clustered by definition
•  Secondary indexes = usually unclustered

27 Magda Balazinska - CSE 444, Spring 2013

Secondary Indexes

•  Applications
–  Index other attributes than primary key
–  Index unsorted files (heap files)
–  Index files that hold data from two relations

•  Called “clustered file”
•  Notice the different use of the term “clustered”!

28

Magda Balazinska - CSE 444, Spring 2013

Index Classification Summary
•  Primary/secondary

–  Primary = determines the location of indexed records
–  Secondary = cannot reorder data, does not determine data location

•  Dense/sparse
–  Dense = every key in the data appears in the index
–  Sparse = the index contains only some keys

•  Clustered/unclustered
–  Clustered = records close in index are close in data
–  Unclustered = records close in index may be far in data

•  B+ tree / Hash table / …

29 Magda Balazinska - CSE 444, Spring 2013

Large Indexes

•  What if index does not fit in memory?

•  Would like to index the index itself
–  Hash-based index
–  Tree-based index

30

6

Magda Balazinska - CSE 444, Spring 2013

Hash-Based Index

18

18

20

22

19

21

21

19

10 21

20 20

30 18

40 19

50 22

60 18

70 21

80 19

H2 age

h2(age) = 00

h2(age) = 01 H1

h1(sid) = 00

h1(sid) = 11

sid

Primary hash-based index
Secondary
hash-based index

Good for point queries but not range queries

31 Magda Balazinska - CSE 444, Spring 2013

Tree-Based Index

•  How many index levels do we need?
•  Can we create them automatically? Yes!
•  Can do something even more powerful!

32

Magda Balazinska - CSE 444, Spring 2013

B+ Trees

•  Search trees

•  Idea in B Trees
–  Make 1 node = 1 page (= 1 block)
–  Keep tree balanced in height

•  Idea in B+ Trees
–  Make leaves into a linked list : facilitates range queries

33 Magda Balazinska - CSE 444, Spring 2013

B+ Trees

Data entries
(Index File)
(Data file)

Data Records

Data entries

Data Records

CLUSTERED UNCLUSTERED

 Note: can also store data records directly as data entries

34

Magda Balazinska - CSE 444, Spring 2013

•  Parameter d = the degree
•  Each node has d <= m <= 2d keys (except root)

•  Each leaf has d <= m <= 2d keys:

B+ Trees Basics

30 120 240

Keys k < 30
Keys 30<=k<120 Keys 120<=k<240 Keys 240<=k

40 50 60

40 50 60

Next leaf

Data records

Each node also
has m+1 pointers

35 Magda Balazinska - CSE 444, Spring 2013

B+ Tree Example
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

d = 2 Find the key 40

40 < 80

20 ≤ 40 < 60

36

7

Magda Balazinska - CSE 444, Spring 2013

Searching a B+ Tree

•  Exact key values:
–  Start at the root
–  Proceed down, to the leaf

•  Range queries:
–  Find lowest bound as above
–  Then sequential traversal

Select name
From Student
Where age = 25

Select name
From Student
Where 20 <= age
 and age <= 30

37 Magda Balazinska - CSE 444, Spring 2013

B+ Tree Design

•  How large d ?
•  Example:

–  Key size = 4 bytes
–  Pointer size = 8 bytes
–  Block size = 4096 bytes

•  2d x 4 + (2d+1) x 8 <= 4096
•  d = 170

38

Magda Balazinska - CSE 444, Spring 2013

B+ Trees in Practice
•  Typical order: 100. Typical fill-factor: 67%.

–  average fanout = 133

•  Typical capacities
–  Height 4: 1334 = 312,900,700 records
–  Height 3: 1333 = 2,352,637 records

•  Can often hold top levels in buffer pool
–  Level 1 = 1 page = 8 Kbytes
–  Level 2 = 133 pages = 1 Mbyte
–  Level 3 = 17,689 pages = 133 Mbytes

39 Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
Insert (K, P)
•  Find leaf where K belongs, insert
•  If no overflow (2d keys or less), halt
•  If overflow (2d+1 keys), split node, insert in parent:

•  If leaf, also keep K3 in right node
•  When root splits, new root has 1 key only

K1 K2 K3 K4 K5

P0 P1 P2 P3 P4 p5

K1 K2

P0 P1 P2

K4 K5

P3 P4 p5

parent
 K3

parent

40

Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90

Insert K=19

41 Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

After insertion

42

8

Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 30 40 50 60 65 80 85 90

10 15 18 20 30 40 50 60 65 80 85 90 19

Now insert 25

43 Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After insertion

50

44

Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 60 100 120 140

10 15 18 19 20 25 30 40 50 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

But now have to split !

50

45 Magda Balazinska - CSE 444, Spring 2013

Insertion in a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

After the split

50

30 40 50

46

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 30 40 60 65 80 85 90 19

Delete 30

50

30 40 50

47 Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

After deleting 30

50

40 50

May change to
40, or not

48

9

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 25 60 65 80 85 90

10 15 18 20 25 40 60 65 80 85 90 19

Now delete 25

50

40 50

49 Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

20 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

After deleting 25
Need to rebalance
Rotate

50

40 50

50

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 40 60 65 80 85 90 19

Now delete 40

50

40 50

51 Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

19 30 60 100 120 140

10 15 18 19 20 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

After deleting 40
Rotation not possible
Need to merge nodes

50

50

52

Magda Balazinska - CSE 444, Spring 2013

Deletion from a B+ Tree
80

19 60 100 120 140

10 15 18 19 20 50 60 65 80 85 90

10 15 18 20 60 65 80 85 90 19

Final tree

50

53 Magda Balazinska - CSE 444, Spring 2013

Summary on B+ Trees

•  Default index structure on most DBMSs
•  Very effective at answering ‘point’ queries:

 productName = ‘gizmo’
•  Effective for range queries:

 50 < price AND price < 100
•  Less effective for multirange:

 50 < price < 100 AND 2 < quant < 20

54

10

Optional Material

•  Let’s take a look at another example of an
index….

•  The following will not be on the midterm/final

Magda Balazinska - CSE 444, Spring 2013 55 Magda Balazinska - CSE 444, Spring 2013

R6 R7 R4 R5 R3

R-Tree Example

R3 R4 R5 R6 R7

Search key values are bounding boxes

R3
R1

R4
R5

R6

R1 R2

R7

R2

Q

Q Q

Q

Designed for spatial data

For insertion: at each level, choose child whose bounding box
needs least enlargement (in terms of area)

56

