
1

CSE 444: Database Internals

Lecture 2
Review of the

Relational Model and SQL

1 Magda Balazinska - CSE 444, Spring 2013 Magda Balazinska - CSE 444, Spring 2013

Relation Definition

•  Database is collection of relations

•  Relation R is subset of S1 x S2 x … x Sn
–  Where Si is the domain of attribute i
–  n is number of attributes of the relation

•  Relation is basically a table with rows & columns
–  SQL uses word table to refer to relations

2

Magda Balazinska - CSE 444, Spring 2013

Properties of a Relation
•  Each row represents an n-tuple of R
•  Ordering of rows is immaterial (a relation is a set)
•  All rows are distinct
•  Ordering of columns is significant

–  Because two columns can have same domain
–  But columns are labeled so
–  Applications need not worry about order
–  They can simply use the names

•  Domain of each column is a primitive type

•  Relation consists of a relation schema and instance

3 Magda Balazinska - CSE 444, Spring 2013

More Definitions

•  Relation schema: describes column heads
–  Relation name
–  Name of each field (or column, or attribute)
–  Domain of each field

•  Degree (or arity) of relation: nb attributes

•  Database schema: set of all relation schemas

4

Magda Balazinska - CSE 444, Spring 2013

Even More Definitions

•  Relation instance: concrete table content
–  Set of tuples (also called records) matching the

schema

•  Cardinality of relation instance: nb tuples

•  Database instance: set of all relation
instances

5 Magda Balazinska - CSE 444, Spring 2013

Example
•  Relation schema

 Supplier(sno: integer, sname: string, scity: string, sstate: string)

•  Relation instance

sno sname scity sstate
1 s1 city 1 WA
2 s2 city 1 WA
3 s3 city 2 MA
4 s4 city 2 MA

6

2

Magda Balazinska - CSE 444, Spring 2013

Integrity Constraints

•  Integrity constraint
–  Condition specified on a database schema
–  Restricts data that can be stored in db instance

•  DBMS enforces integrity constraints
–  Ensures only legal database instances exist

•  Simplest form of constraint is domain constraint
–  Attribute values must come from attribute domain

7 Magda Balazinska - CSE 444, Spring 2013

Key Constraints
•  Key constraint: “certain minimal subset of fields

is a unique identifier for a tuple”

•  Candidate key
–  Minimal set of fields
–  That uniquely identify each tuple in a relation

•  Primary key
–  One candidate key can be selected as primary key

8

Magda Balazinska - CSE 444, Spring 2013

Foreign Key Constraints
•  A relation can refer to a tuple in another relation

•  Foreign key
–  Field that refers to tuples in another relation
–  Typically, this field refers to the primary key of other

relation
–  Can pick another field as well

9 Magda Balazinska - CSE 444, Spring 2013

Key Constraint SQL Examples

CREATE TABLE Part (

 pno integer,
 pname varchar(20),

 psize integer,

 pcolor varchar(20),

 PRIMARY KEY (pno)
);

10

Magda Balazinska - CSE 444, Spring 2013

Key Constraint SQL Examples

CREATE TABLE Supply(

 sno integer,
 pno integer,

 qty integer,

 price integer

);

11 Magda Balazinska - CSE 444, Spring 2013

Key Constraint SQL Examples

CREATE TABLE Supply(

 sno integer,
 pno integer,

 qty integer,

 price integer,

 PRIMARY KEY (sno,pno)
);

12

3

Magda Balazinska - CSE 444, Spring 2013

Key Constraint SQL Examples

CREATE TABLE Supply(

 sno integer,
 pno integer,

 qty integer,

 price integer,

 PRIMARY KEY (sno,pno),
 FOREIGN KEY (sno) REFERENCES Supplier,
 FOREIGN KEY (pno) REFERENCES Part

);

13 Magda Balazinska - CSE 444, Spring 2013

Key Constraint SQL Examples

CREATE TABLE Supply(

 sno integer,
 pno integer,

 qty integer,

 price integer,

 PRIMARY KEY (sno,pno),
 FOREIGN KEY (sno) REFERENCES Supplier
 ON DELETE NO ACTION,
 FOREIGN KEY (pno) REFERENCES Part
 ON DELETE CASCADE

);

14

Magda Balazinska - CSE 444, Spring 2013

General Constraints
•  Table constraints serve to express complex

constraints over a single table

CREATE TABLE Part (
 pno integer,
 pname varchar(20),
 psize integer,
 pcolor varchar(20),
 PRIMARY KEY (pno),
 CHECK (psize > 0)
);

Note: Also possible to create constraints over many tables
15 Magda Balazinska - CSE 444, Spring 2013

Relational Queries

•  Query inputs and outputs are relations

•  Query evaluation
–  Input: instances of input relations
–  Output: instance of output relation

16

Magda Balazinska - CSE 444, Spring 2013

Relational Algebra
•  Query language associated with relational model

•  Queries specified in an operational manner
–  A query gives a step-by-step procedure

•  Relational operators
–  Take one or two relation instances as argument
–  Return one relation instance as result
–  Easy to compose into relational algebra expressions

17 Magda Balazinska - CSE 444, Spring 2013

Relational Operators

•  Selection: σcondition(S)
–  Condition is Boolean combination (∧,∨) of terms
–  Term is: attr. op constant, attr. op attr.
–  Op is: <, <=, =, ≠, >=, or >

•  Projection: πlist-of-attributes(S)
•  Union (∪), Intersection (∩), Set difference (–),
•  Cross-product or cartesian product (×)
•  Join: R θ S = σθ(R × S)
•  Division: R/S, Rename ρ(R(F),E)

18

4

Magda Balazinska - CSE 444, Spring 2013

Selection & Projection Examples

no name zip disease
1 p1 98125 flu
2 p2 98125 heart
3 p3 98120 lung
4 p4 98120 heart

Patient

σdisease=‘heart’(Patient)
no name zip disease
2 p2 98125 heart
4 p4 98120 heart

zip disease
98125 flu
98125 heart
98120 lung
98120 heart

πzip,disease(Patient)

πzip (σdisease=‘heart’(Patient))
zip
98120
98125

19 Magda Balazinska - CSE 444, Spring 2013

Relational Operators

•  Selection: σcondition(S)
–  Condition is Boolean combination (∧,∨) of terms
–  Term is: attr. op constant, attr. op attr.
–  Op is: <, <=, =, ≠, >=, or >

•  Projection: πlist-of-attributes(S)
•  Union (∪), Intersection (∩), Set difference (–),
•  Cross-product or cartesian product (×)
•  Join: R θ S = σθ(R × S)
•  Division: R/S, Rename ρ(R(F),E)

20

Magda Balazinska - CSE 444, Spring 2013

Cross-Product Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P.age P.zip disease
54 98125 heart
54 98125 heart
20 98120 flu
20 98120 flu

name V.age V.zip
p1 54 98125
p2 20 98120
p1 54 98125
p2 20 98120

P × V

name age zip
p1 54 98125
p2 20 98120

21 Magda Balazinska - CSE 444, Spring 2013

Different Types of Join
•  Theta-join: R θ S = σθ(R x S)

–  Join of R and S with a join condition θ
–  Cross-product followed by selection θ

•  Equijoin: R θ S = πA (σθ(R x S))
–  Join condition θ consists only of equalities
–  Projection πA drops all redundant attributes

•  Natural join: R S = πA (σθ(R x S))
–  Equijoin
–  Equality on all fields with same name in R and in S

22

Magda Balazinska - CSE 444, Spring 2013

Theta-Join Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P.age P.zip disease
20 98120 flu

name V.age V.zip
p2 20 98120

P P.age=V.age ∧ P.zip=A.zip ∧ P.age < 50 V

name age zip
p1 54 98125
p2 20 98120

23 Magda Balazinska - CSE 444, Spring 2013

Equijoin Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P P.age=V.age V

name age zip
p1 54 98125
p2 20 98120

age P.zip disease name V.zip

54 98125 heart p1 98125

20 98120 flu p2 98120

24

5

Magda Balazinska - CSE 444, Spring 2013

Natural Join Example

age zip disease
54 98125 heart
20 98120 flu

AnonPatient P Voters V

P V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

25 Magda Balazinska - CSE 444, Spring 2013

More Joins

•  Outer join
–  Include tuples with no matches in the output
–  Use NULL values for missing attributes

•  Variants
–  Left outer join
–  Right outer join
–  Full outer join

26

Magda Balazinska - CSE 444, Spring 2013

Outer Join Example

age zip disease
54 98125 heart
20 98120 flu
33 98120 lung

AnonPatient P Voters V

P o V

name age zip
p1 54 98125
p2 20 98120

age zip disease name

54 98125 heart p1

20 98120 flu p2

33 98120 lung null

27 Magda Balazinska - CSE 444, Spring 2013

Example of Algebra Queries

Q1: Names of patients who have heart disease
πname(Voter (σdisease=‘heart’ (AnonPatient))

28

Magda Balazinska - CSE 444, Spring 2013

More Examples

Relations
 Supplier(sno,sname,scity,sstate)!
!Part(pno,pname,psize,pcolor)!
!Supply(sno,pno,qty,price)!

Q2: Name of supplier of parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part))

Q3: Name of supplier of red parts or parts with size greater than 10
πsname(Supplier Supply (σpsize>10 (Part) ∪ σpcolor=‘red’ (Part)))

(Many more examples in the book)

29

Logical Query Plans

An RA expression but represented as a tree

Magda Balazinska - CSE 444, Spring 2013 30

Supplier Supply

pno=pno

Part

Π sname

σ psize > 10
sno=sno

6

Magda Balazinska - CSE 444, Spring 2013

Extended Operators
of Relational Algebra

•  Duplicate elimination (δ)
–  Since commercial DBMSs operate on multisets

not sets
•  Aggregate operators (γ)

–  Min, max, sum, average, count
•  Grouping operators (γ)

–  Partitions tuples of a relation into “groups”
–  Aggregates can then be applied to groups

•  Sort operator (τ)

31 Magda Balazinska - CSE 444, Spring 2013

Structured Query Language: SQL

•  Influenced by relational calculus (see 344)
•  Declarative query language
•  Multiple aspects of the language

–  Data definition language
•  Statements to create, modify tables and views

–  Data manipulation language
•  Statements to issue queries, insert, delete data

–  More

32

Magda Balazinska - CSE 444, Spring 2013

SQL Query

 SELECT <attributes>
 FROM <one or more relations>
 WHERE <conditions>

Basic form: (plus many many more bells and whistles)

33 Magda Balazinska - CSE 444, Spring 2013

Simple SQL Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT *
FROM Product
WHERE category=‘Gadgets’

Product

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
“selection”

34

Magda Balazinska - CSE 444, Spring 2013

Simple SQL Query

PName Price Category Manufacturer
Gizmo $19.99 Gadgets GizmoWorks

Powergizmo $29.99 Gadgets GizmoWorks
SingleTouch $149.99 Photography Canon
MultiTouch $203.99 Household Hitachi

SELECT PName, Price, Manufacturer
FROM Product
WHERE Price > 100

Product

PName Price Manufacturer
SingleTouch $149.99 Canon
MultiTouch $203.99 Hitachi

“selection” and
“projection”

35 Magda Balazinska - CSE 444, Spring 2013

Details

•  Case insensitive:
–  Same: SELECT Select select
–  Same: Product product
–  Different: ‘Seattle’ ‘seattle’

•  Constants:
–  ‘abc’ - yes
–  “abc” - no

36

7

Magda Balazinska - CSE 444, Spring 2013

Eliminating Duplicates

SELECT DISTINCT category
FROM Product

Compare to:

SELECT category
FROM Product

Category
Gadgets
Gadgets

Photography
Household

Category
Gadgets

Photography
Household

37 Magda Balazinska - CSE 444, Spring 2013

Ordering the Results

SELECT pname, price, manufacturer
FROM Product
WHERE category=‘gizmo’ AND price > 50
ORDER BY price, pname

Ties are broken by the second attribute on the ORDER BY list, etc.

Ordering is ascending, unless you specify the DESC keyword.

38

Magda Balazinska - CSE 444, Spring 2013

Joins

• 

Product (pname, price, category, manufacturer)
Company (cname, stockPrice, country)

Find all products under $200 manufactured in Japan;
return their names and prices.

SELECT PName, Price
FROM Product, Company
WHERE Manufacturer=CName AND Country=‘Japan’
 AND Price <= 200

39 Magda Balazinska - CSE 444, Spring 2013

Tuple Variables

SELECT DISTINCT pname, address
FROM Person, Company
WHERE worksfor = cname

Which
address ?

Person(pname, address, worksfor)
Company(cname, address)

SELECT DISTINCT Person.pname, Company.address
FROM Person, Company
WHERE Person.worksfor = Company.cname

SELECT DISTINCT x.pname, y.address
FROM Person AS x, Company AS y
WHERE x.worksfor = y.cname 40

Magda Balazinska - CSE 444, Spring 2013

Nested Queries
•  Nested query

–  Query that has another query embedded within it
–  The embedded query is called a subquery

•  Why do we need them?
–  Enables to refer to a table that must itself be computed

•  Subqueries can appear in
–  WHERE clause (common)
–  FROM clause (less common)
–  HAVING clause (less common)

41 Magda Balazinska - CSE 444, Spring 2013

Subqueries Returning Relations

Return cities where one can find companies that manufacture
products bought by Joe Blow

Company(name, city)
Product(pname, maker)
Purchase(id, product, buyer)

42

 SELECT Company.city
 FROM Company
 WHERE Company.name IN
 (SELECT Product.maker
 FROM Purchase , Product
 WHERE Product.pname=Purchase.product
 AND Purchase .buyer = ‘Joe Blow‘);

8

Magda Balazinska - CSE 444, Spring 2013

Subqueries Returning Relations

Product (pname, price, category, maker)
Find products that are more expensive than all those produced
By “Gizmo-Works”

You can also use: s > ALL R
 s > ANY R
 EXISTS R

43

 SELECT name
 FROM Product
 WHERE price > ALL (SELECT price
 FROM Purchase
 WHERE maker=‘Gizmo-Works’) Magda Balazinska - CSE 444, Spring 2013

Correlated Queries

 SELECT DISTINCT title
 FROM Movie AS x
 WHERE year <> ANY
 (SELECT year
 FROM Movie
 WHERE title = x.title);

 Movie (title, year, director, length)
 Find movies whose title appears more than once.

Note (1) scope of variables (2) this can still be expressed as single SFW

correlation

44

Magda Balazinska - CSE 444, Spring 2013

Aggregation

SELECT count(*)
FROM Product
WHERE year > 1995

Except count, all aggregations apply to a single attribute

SELECT avg(price)
FROM Product
WHERE maker=“Toyota”

SQL supports several aggregation operations:
 sum, count, min, max, avg

45 Magda Balazinska - CSE 444, Spring 2013

Grouping and Aggregation

Conceptual evaluation steps:
1.  Evaluate FROM-WHERE, apply condition C1
2.  Group by the attributes a1,…,ak
3.  Apply condition C2 to each group (may have aggregates)
4.  Compute aggregates in S and return the result
Read more about it in the book...

SELECT S
FROM R1,…,Rn
WHERE C1
GROUP BY a1,…,ak
HAVING C2

46

Magda Balazinska - CSE 444, Spring 2013 47

From SQL to RA

48

From SQL to RA

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
 x.price > 100 and z.city = ‘Seattle’

Magda Balazinska - CSE 444, Spring 2013

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

9

49

From SQL to RA

Product Purchase

pid=pid

price>100 and city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ

Product(pid, name, price)
Purchase(pid, cid, store)
Customer(cid, name, city)

50

An Equivalent Expression

Product Purchase

pid=pid

city=‘Seattle’

x.name,z.name

δ

cid=cid

Customer

Π

σ price>100

σ

Query optimization =
 finding cheaper,
 equivalent expressions

Extended RA: Operators on Bags

•  Duplicate elimination δ	

•  Grouping γ	

•  Sorting τ	

Magda Balazinska - CSE 444, Spring 2013 51 52

Logical Query Plan

SELECT city, count(*)
FROM sales
GROUP BY city
HAVING sum(price) > 100

sales(product, city, price)

γ city, sum(price)→p, count(*) → c

σ p > 100

Π city, c

T1(city,p,c)

T2(city,p,c)

T3(city, c)

T1, T2, T3 = temporary tables

Magda Balazinska - CSE 444, Spring 2013

Magda Balazinska - CSE 444, Spring 2013

Typical Plan for Block (1/2)

R S

join condition

σ selection condition

π fields

join condition

…

SELECT-PROJECT-JOIN
Query

...

53 Magda Balazinska - CSE 444, Spring 2013

Typical Plan For Block (2/2)

π fields

γ fields, sum/count/min/max(fields)

havingcondition

σ selection condition

join condition

… …
54

10

Benefits of Relational Model

•  Relational model facilitates physical data
independence
–  Can change how data is organized on disk without

affecting applications

•  Relational model facilitates a high level of
logical data independence
–  Can change the logical schema without affecting

applications (not 100%... consider updates)

Magda Balazinska - CSE 444, Spring 2013 55

