
A

CSE 444: Database Internals.
Section 4: Operator Algorithms.

1. 15.3.4-B
Consider two relations R and S such that T (R) ≥ T (S). How would you perform a
nested-loop join in the following cases so as to minimize the number of I/Os, given that
the memory size is M blocks large.

[Write the optimized pseudo-code]

(1) R is unclustered but S is clustered.
B(R) = 1000 B(S) = 500 M = 101
[R outside: B(R)/(M−1)(T (R)/B(R)(M−1)+B(S)) = T (R)+B(S)B(R)/(M−1) =
T (R) + 5000 ]
[S outside: B(S)/(M −1)(M −1+T (R)) = B(S)+B(S)T (R)/(M −1) = 500+5T (R)
]

(2) R is clustered but S is unclustered.
[S outside: B(S)/(M −1)(T (S)/B(S)(M −1)+B(R)) = T (S)+B(R)B(S)/(M −1) =
T (S) + 5000 ]
[R outside: B(R)/(M−1)(M−1+T (S)) = B(R)+B(R)T (S)/(M−1) = 1000+10T (S)
]

2. 15.4.4-A
Consider the join of two sorted relations R and S with B(R) = 1000 and B(S) = 500
and M = 101. Let the join attribute by Y such that only two value of Y are present
that appear equally in half the tuples of R and S. How do we compute the join? And,
how many I/Os do we need?

[We read in 100 blocks of R at a time and read the relevant parts of S one at a time.
So 1000 for R, and 250 each of S repeated 10 times. For a total of 3500. If we take the
alternative approach: we read 400 blocks of S for which we only need to read 500 blocks
from R and one 100 block of S where we need to read the whole of R. This leads to a
total of 500 + 4 ∗ 500 + 1 ∗ 1000 = 3500.]

3. 15.4.9
Suppose you are sorting a relation R with B(R) blocks. The two-pass sort-merge algo-
rithm proposed in the lecture takes 3B(R) I/Os to produce the sorted file. Can we do
better by not writing some blocks onto the disk during the first pass?

[Mention that if the k runs on disk and you are left with n blocks such that n+k ≤ M ,
then you need not write out the last k blocks out. This saves you 2k blocks in the
second pass. The total cost is thus: 3B(R) − 2n and this works for databases of size
n+ (B(R)− n)/M ≤ M .]

[Alternatively, you could always keep the first block of each sorted list in memory.
The first run, thus, has M − 1 tuples, the second has M − 2 and so on. B(R) ≤ M(M +
1)/2. The total I/O is 3B(R)− 2M .]

4. SORTING AN ARBITRARILY LARGE FILE
Suppose you want to sort a file R with B(R) blocks on a machine with M blocks of
memory. Unlike the case discussed in the lecture, you can not assume any bound on
the size of B(R) (i.e., B(R) > M2). Can you suggest an algorithm to sort this file? How
many disk I/Os do you need?



A:2

[You recursively merge the files creating a merge-tree with a fanout of M .]


