
1

CSE 444: Database Internals

Lectures 23-24

Parallel DBMSs

1 Magda Balazinska - CSE 444, Spring 2012 Magda Balazinska - CSE 444, Spring 2012 2

References

•  Book Chapter 20.1

•  Database management systems.

 Ramakrishnan and Gehrke.

 Third Ed. Chapter 22.11
 (more info than our main book)

Parallel v.s. Distributed
Databases

•  Distributed database system:
–  Data is stored across several sites, each site

managed by a DBMS capable of running
independently

•  Parallel database system:
–  Improve performance through parallel

implementation

3 Magda Balazinska - CSE 444, Spring 2012

Parallel DBMSs

•  Goal
–  Improve performance by executing multiple

operations in parallel

•  Key benefit

–  Cheaper to scale than relying on a single
increasingly more powerful processor

•  Key challenge
–  Ensure overhead and contention do not kill

performance

4 Magda Balazinska - CSE 444, Spring 2012

Demonstration

•  Lab 6 demonstration

Magda Balazinska - CSE 444, Spring 2012 5

Performance Metrics
for Parallel DBMSs

Speedup
•  More processors è higher speed

•  Individual queries should run faster

•  Should do more transactions per second (TPS)

•  Fixed problem size overall, vary # of processors
("strong scaling”)

6 Magda Balazinska - CSE 444, Spring 2012

2

Linear v.s. Non-linear Speedup

processors (=P)

Speedup

7 Magda Balazinska - CSE 444, Spring 2012

Performance Metrics
for Parallel DBMSs

Scaleup
•  More processors è can process more data

•  Fixed problem size per processor, vary # of
processors ("weak scaling”)

•  Batch scaleup
–  Same query on larger input data should take the same time

•  Transaction scaleup
–  N-times as many TPS on N-times larger database

–  But each transaction typically remains small

8 Magda Balazinska - CSE 444, Spring 2012

Linear v.s. Non-linear Scaleup

processors (=P) AND data size

Batch

Scaleup

×1 ×5 ×10 ×15

9 Magda Balazinska - CSE 444, Spring 2012

Warning

•  Be careful. Commonly used terms today:
–  “scale up” = use an increasingly more powerful server

–  “scale out” = use a larger number of servers

10 Magda Balazinska - CSE 444, Spring 2012

Challenges to
Linear Speedup and Scaleup

•  Startup cost
–  Cost of starting an operation on many processors

•  Interference
–  Contention for resources between processors

•  Skew
–  Slowest processor becomes the bottleneck

11 Magda Balazinska - CSE 444, Spring 2012

Architectures for Parallel Databases

•  Shared memory

•  Shared disk

•  Shared nothing

12 Magda Balazinska - CSE 444, Spring 2012

3

Shared Memory

Interconnection Network

P P P

Global Shared Memory

D D D
13

Shared Disk

Interconnection Network

P P P

M M M

D D D
14

Shared Nothing

Interconnection Network

P P P

M M M

D D D
15

Shared Nothing

•  Most scalable architecture
–  Minimizes interference by minimizing resource sharing

–  Can use commodity hardware

•  Also most difficult to program and manage

•  Processor = server = node
–  “Processor” != core

•  P = number of nodes

Magda Balazinska - CSE 444, Spring 2012 We will focus on shared nothing 16

Question

•  What can we parallelize in a parallel DBMS ?

17 Magda Balazinska - CSE 444, Spring 2012

Taxonomy for
Parallel Query Evaluation

•  Inter-query parallelism
–  Each query runs on one processor

•  Inter-operator parallelism
–  A query runs on multiple processors

–  An operator runs on one processor

•  Intra-operator parallelism
–  An operator runs on multiple processors

18 Magda Balazinska - CSE 444, Spring 2012

4

Horizontal Data Partitioning

•  Relation R split into P chunks R0, …, RP-1,
stored at the P nodes

•  Round robin: tuple ti to chunk (i mod P)

•  Hash based partitioning on attribute A:
–  Tuple t to chunk h(t.A) mod P

•  Range based partitioning on attribute A:
–  Tuple t to chunk i if vi-1 < t.A < vi

19 Magda Balazinska - CSE 444, Spring 2012

Horizontal Data Partitioning

•  All three choices are just special cases:
–  For each tuple, compute bin = f(t)

–  Different properties of the function f determine hash
vs. range vs. round robin vs. anything

20 Magda Balazinska - CSE 444, Spring 2012

Parallel Selection

Compute σA=v(R), or σv1<A<v2(R)

•  On a conventional database: cost = B(R)

•  Q: What is the cost on a parallel database with
P processors ?
–  Round robin

–  Hash partitioned

–  Range partitioned

21 Magda Balazinska - CSE 444, Spring 2012

Parallel Selection

•  Q: What is the cost on a parallel database with
P processors ?

•  A: B(R) / P in all cases if cost is response time

•  However, different processors do the work:
–  Round robin: all servers do the work

–  Hash: one server for σA=v(R), all for σv1<A<v2(R)

–  Range: one server only

22 Magda Balazinska - CSE 444, Spring 2012

Data Partitioning Revisited

What are the pros and cons ?

•  Round robin

–  Good load balance but always needs to read all the data

•  Hash based partitioning
–  Good load balance but works only for equality predicates

and full scans

•  Range based partitioning
–  Works well for range predicates but can suffer from skew

23 Magda Balazinska - CSE 444, Spring 2012

Parallel Group By: γA, sum(B)(R)

•  Step 1: server i partitions chunk Ri using a hash
function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1

•  Step 2: server i sends partition Rij to serve j

•  Step 3: server j computes γA, sum(B) on
R0j, R1j, …, RP-1,j

24 Magda Balazinska - CSE 444, Spring 2012

5

Cost of Parallel Group By

Recall conventional cost = 3B(R)

•  Cost of Step 1: B(R)/P I/O operations

•  Cost of Step 2: (P-1)/P B(R) blocks are sent
–  Network costs assumed to be much lower than I/O

•  Cost of Step 3: 2 B(R)/P
–  Why ?

–  When can we reduce it to 0 ?

Total = 3B(R) / P + communication costs

25 Magda Balazinska - CSE 444, Spring 2012

Parallel Group By: γA, sum(B)(R)

•  Can we do better?

•  Sum?

•  Count?

•  Avg?

•  Max?

•  Median?

26 Magda Balazinska - CSE 444, Spring 2012

Parallel Group By: γA, sum(B)(R)

•  Sum(B) = Sum(B0) + Sum(B1) + … + Sum(Bn)

•  Count(B) = Count(B0) + Count(B1) + … + Count(Bn)

•  Max(B) = Max(Max(B0), Max(B1), …, Max(Bn))

•  Avg(B) = Sum(B) / Count(B)

•  Median(B) =

27

distributive

algebraic

holistic

Magda Balazinska - CSE 444, Spring 2012

Parallel Join: R ⋈A=B S

•  Step 1
–  For all servers in [0,k], server i partitions chunk Ri using a

hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1
–  For all servers in [k+1,P], server j partitions chunk Sj

using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1

•  Step 2:

–  Server i sends partition Riu to server u
–  Server j sends partition Sju to server u

•  Steps 3: Server u computes the join of Riu with Sju

28 Magda Balazinska - CSE 444, Spring 2012

Cost of Parallel Join

•  Step 1: (B(R) + B(S))/P
–  Assuming both R and S are spread across all servers

•  Step 2: 0
–  (P-1)/P (B(R) + B(S)) blocks are sent, but we assume

network costs to be << disk I/O costs

•  Step 3:
–  0 if smaller table fits in main memory: B(S)/P <=M
–  4(B(R)+B(S))/P otherwise

29 Magda Balazinska - CSE 444, Spring 2012

Parallel Dataflow Implementation

•  Use relational operators unchanged

•  Add a special shuffle operator
–  Handle data routing, buffering, and flow control

–  Inserted between consecutive operators in the query plan

–  Two components: ShuffleProducer and ShuffleConsumer

–  Producer pulls data from operator and sends to n
consumers

•  Producer acts as driver for operators below it in query plan

–  Consumer buffers input data from n producers and
makes it available to operator through getNext interface

30 Magda Balazinska - CSE 444, Spring 2012

6

Modern Shared Nothing
Parallel DBMSs

•  Greenplum founded in 2003 acquired by EMC in 2010

•  Vertica founded in 2005 and acquired by HP in 2011

•  DATAllegro founded in 2003 acquired by Microsoft in
2008

•  Netezza founded in 2000 and acquired by IBM in 2010

•  Aster Data Systems founded in 2005 acquired by
Teradata in 2011
–  MapReduce-based data processing system (next week)

Magda Balazinska - CSE 444, Spring 2012 31 32

Example System: Teradata

AMP = unit of parallelism
Magda Balazinska - CSE 444, Spring 2012

33

Example System: Teradata

SELECT *
 FROM Orders o, Lines i

 WHERE o.item = i.item

 AND o.date = today()

join

select

scan scan

date = today()

o.item = i.item

Order o Item i

Find all orders from today, along with the items ordered

Magda Balazinska - CSE 444, Spring 2012 34

Example System:
Teradata

AMP 1 AMP 2 AMP 3

select
date=today()

select
date=today()

select
date=today()

scan
Order o

scan
Order o

scan
Order o

hash
h(o.item)

hash
h(o.item)

hash
h(o.item)

AMP 4 AMP 5 AMP 6

join

select

scan

date = today()

o.item = i.item

Order o

Magda Balazinska - CSE 444, Spring 2012

35

Example System:
Teradata

AMP 1 AMP 2 AMP 3

scan
Item i

AMP 4 AMP 5 AMP 6

hash
h(i.item)

scan
Item i

hash
h(i.item)

scan
Item i

hash
h(i.item)

• join

• scan
• date = today()

• o.item = i.item

• Order o
• Item i

Magda Balazinska - CSE 444, Spring 2012 36

Example System: Teradata

AMP 4 AMP 5 AMP 6

join join join
o.item = i.item o.item = i.item o.item = i.item

contains all orders and all
lines where hash(item) = 1

contains all orders and all
lines where hash(item) = 2

contains all orders and all
lines where hash(item) = 3

Magda Balazinska - CSE 444, Spring 2012

