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CSE 444: Database Internals 

Lectures 23-24 

Parallel DBMSs 
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References 

•  Book Chapter 20.1 
 

•  Database management systems. 

 Ramakrishnan and Gehrke.  

 Third Ed. Chapter 22.11 
 (more info than our main book) 

 
  

Parallel v.s. Distributed 
Databases 

•  Distributed database system: 
–  Data is stored across several sites, each site 

managed by a DBMS capable of running 
independently 

•  Parallel database system: 
–  Improve performance through parallel 

implementation 
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Parallel DBMSs 

•  Goal 
–  Improve performance by executing multiple 

operations in parallel 

 
•  Key benefit 

–  Cheaper to scale than relying on a single 
increasingly more powerful processor 

•  Key challenge 
–  Ensure overhead and contention do not kill 

performance 
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Demonstration 

•  Lab 6 demonstration 
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Performance Metrics  
for Parallel DBMSs 

Speedup  
•  More processors è higher speed 

•  Individual queries should run faster 

•  Should do more transactions per second (TPS) 

•  Fixed problem size overall, vary # of processors 
("strong scaling”) 
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Linear v.s. Non-linear Speedup 

# processors (=P) 

Speedup 
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Performance Metrics  
for Parallel DBMSs 

Scaleup 
•  More processors è can process more data 

•  Fixed problem size per processor, vary # of 
processors ("weak scaling”) 

•  Batch scaleup 
–  Same query on larger input data should take the same time 

•  Transaction scaleup 
–  N-times as many TPS on N-times larger database 

–  But each transaction typically remains small 
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Linear v.s. Non-linear Scaleup 

# processors (=P) AND data size  

Batch 

Scaleup 

×1 ×5 ×10 ×15 
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Warning 

•  Be careful. Commonly used terms today: 
–  “scale up” = use an increasingly more powerful server 

–  “scale out” = use a larger number of servers 
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Challenges to  
Linear Speedup and Scaleup 

•  Startup cost  
–  Cost of starting an operation on many processors 

•  Interference 
–  Contention for resources between processors 

•  Skew 
–  Slowest processor becomes the bottleneck 
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Architectures for Parallel Databases 

•  Shared memory 

•  Shared disk 

•  Shared nothing 
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Shared Memory 

Interconnection Network 

P P P 

Global Shared Memory 

D D D 
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Shared Disk 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

Interconnection Network 

P P P 

M M M 

D D D 
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Shared Nothing 

•  Most scalable architecture 
–  Minimizes interference by minimizing resource sharing 

–  Can use commodity hardware 

•  Also most difficult to program and manage 

•  Processor = server = node  
–  “Processor” != core 

•  P = number of nodes 
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Question 

 

•  What can we parallelize in a parallel DBMS ? 
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Taxonomy for 
Parallel Query Evaluation 

•  Inter-query parallelism 
–  Each query runs on one processor 

•  Inter-operator parallelism 
–  A query runs on multiple processors 

–  An operator runs on one processor 

•  Intra-operator parallelism 
–  An operator runs on multiple processors 
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Horizontal Data Partitioning 

•  Relation R split into P chunks R0, …, RP-1, 
stored at the P nodes 

•  Round robin: tuple ti to chunk (i mod P) 

•  Hash based partitioning on attribute A: 
–  Tuple t to chunk h(t.A) mod P 

•  Range based partitioning on attribute A: 
–  Tuple t to chunk i if vi-1 < t.A < vi 
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Horizontal Data Partitioning 

•  All three choices are just special cases: 
–  For each tuple, compute bin = f(t) 

–  Different properties of the function f determine hash 
vs. range vs. round robin vs. anything 
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Parallel Selection 

Compute σA=v(R), or σv1<A<v2(R) 

•  On a conventional database: cost = B(R) 

•  Q: What is the cost on a parallel database with 
P processors ? 
–  Round robin 

–  Hash partitioned 

–  Range partitioned 
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Parallel Selection 

•  Q: What is the cost on a parallel database with 
P processors ? 

•  A: B(R) / P in all cases if cost is response time 

•  However, different processors do the work: 
–  Round robin: all servers do the work 

–  Hash: one server for σA=v(R), all for σv1<A<v2(R) 

–  Range: one server only 
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Data Partitioning Revisited 

What are the pros and cons ? 
 
•  Round robin 

–  Good load balance but always needs to read all the data 

•  Hash based partitioning 
–  Good load balance but works only for equality predicates 

and full scans 

•  Range based partitioning 
–  Works well for range predicates but can suffer from skew 
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Parallel Group By:  γA, sum(B)(R) 

•  Step 1: server i partitions chunk Ri using a hash 
function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   

•  Step 2: server i sends partition Rij to serve j 

•  Step 3:  server j computes γA, sum(B) on  
R0j, R1j, …, RP-1,j  

24 Magda Balazinska - CSE 444, Spring 2012 



5 

Cost of Parallel Group By 

Recall conventional cost =  3B(R) 

•  Cost of Step 1:  B(R)/P  I/O operations 

•  Cost of Step 2: (P-1)/P B(R) blocks are sent 
–  Network costs assumed to be much lower than I/O 

•  Cost of Step 3: 2 B(R)/P 
–  Why ? 

–  When can we reduce it to 0 ? 

Total = 3B(R) / P  + communication costs 
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Parallel Group By:  γA, sum(B)(R) 

•  Can we do better? 

•  Sum? 

•  Count? 

•  Avg? 

•  Max? 

•  Median? 
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Parallel Group By:  γA, sum(B)(R) 

•  Sum(B) = Sum(B0) + Sum(B1) + … + Sum(Bn) 

•  Count(B) = Count(B0) + Count(B1) + … + Count(Bn) 

•  Max(B) = Max(Max(B0), Max(B1), …, Max(Bn)) 

•  Avg(B) = Sum(B) / Count(B) 

•  Median(B) =  
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distributive 

algebraic 

holistic 

Magda Balazinska - CSE 444, Spring 2012 

Parallel Join:  R ⋈A=B S 

•  Step 1 
–  For all servers in [0,k], server i partitions chunk Ri using a 

hash function h(t.A) mod P: Ri0, Ri1, …, Ri,P-1   
–  For all servers in [k+1,P], server j partitions chunk Sj 

using a hash function h(t.A) mod P: Sj0, Sj1, …, Rj,P-1   

 
•  Step 2:  

–  Server i sends partition Riu to server u 
–  Server j sends partition Sju to server u 

 
•  Steps 3: Server u computes the join of Riu with Sju 
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Cost of Parallel Join 

•  Step 1:  (B(R) + B(S))/P 
–  Assuming both R and S are spread across all servers 

•  Step 2:  0 
–  (P-1)/P (B(R) + B(S)) blocks are sent, but we assume 

network costs to be << disk I/O costs 

•  Step 3: 
–  0 if smaller table fits in main memory: B(S)/P <=M 
–  4(B(R)+B(S))/P otherwise 
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Parallel Dataflow Implementation 

•  Use relational operators unchanged  

•  Add a special shuffle operator 
–  Handle data routing, buffering, and flow control 

–  Inserted between consecutive operators in the query plan 

–  Two components: ShuffleProducer and ShuffleConsumer 

–  Producer pulls data from operator and sends to n 
consumers 

•  Producer acts as driver for operators below it in query plan 

–  Consumer buffers input data from n producers and 
makes it available to operator through getNext interface 
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Modern Shared Nothing  
Parallel DBMSs 

•  Greenplum founded in 2003 acquired by EMC in 2010 

•  Vertica founded in 2005 and acquired by HP in 2011 

•  DATAllegro founded in 2003 acquired by Microsoft in 
2008  

•  Netezza founded in 2000 and acquired by IBM in 2010 

•  Aster Data Systems founded in 2005 acquired by 
Teradata in 2011  
–  MapReduce-based data processing system (next week) 
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Example System: Teradata 

AMP = unit of parallelism 
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Example System: Teradata 

SELECT *  
  FROM Orders o, Lines i 

 WHERE o.item = i.item 

   AND o.date = today() 

join 

select 

scan scan 

date = today() 

o.item = i.item 

Order o Item i 

Find all orders from today, along with the items ordered 
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Example System:  
Teradata 

AMP 1 AMP 2 AMP 3 

select 
date=today() 

select 
date=today() 

select 
date=today() 

scan 
Order o 

scan 
Order o 

scan 
Order o 

hash 
h(o.item) 

hash 
h(o.item) 

hash 
h(o.item) 

AMP 4 AMP 5 AMP 6 

join 

select 

scan 

date = today() 

o.item = i.item 

Order o 
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Example System:  
Teradata 

AMP 1 AMP 2 AMP 3 

scan 
Item i 

AMP 4 AMP 5 AMP 6 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

scan 
Item i 

hash 
h(i.item) 

• join 

• scan 
• date = today() 

• o.item = i.item 

• Order o 
• Item i 
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Example System: Teradata 

AMP 4 AMP 5 AMP 6 

join join join 
o.item = i.item o.item = i.item o.item = i.item 

contains all orders and all 
lines where hash(item) = 1 

contains all orders and all 
lines where hash(item) = 2 

contains all orders and all 
lines where hash(item) = 3 
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