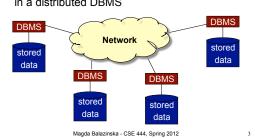
CSE 444: Database Internals

Lecture 21 Two-Phase Commit (2PC)

Magda Balazinska - CSE 444, Spring 2012


References

- · In our book: Sections 20.5
- · Other book: Database management systems. Ramakrishnan and Gehrke. Third Ed. Chapter 22

Magda Balazinska - CSE 444, Spring 2012

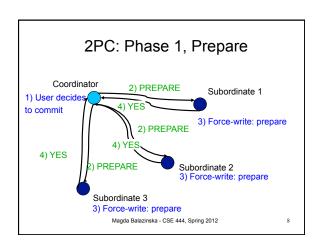
Where We Are

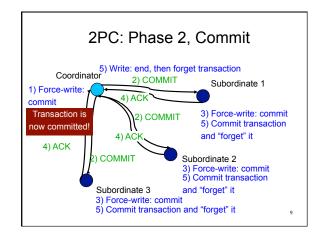
· We know how to optimize and execute queries in a distributed DBMS

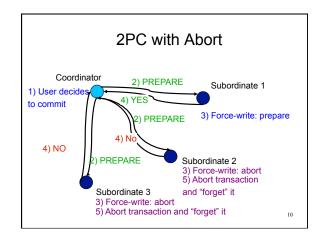
Distributed Transactions

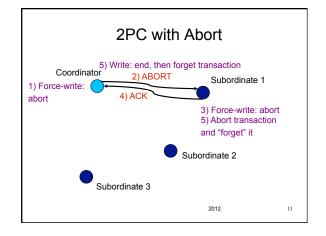
- Concurrency control
- · Failure recovery
 - Transaction must be committed at all sites or at none of the sites!
 - · No matter what failures occur and when they occur
 - Two-phase commit protocol (2PC)

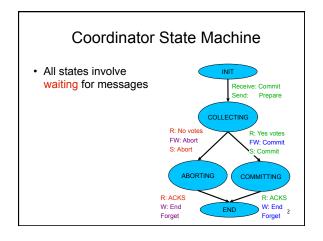
Magda Balazinska - CSE 444, Spring 2012


Distributed Concurrency Control


- · In theory, different techniques are possible
 - Pessimistic, optimistic, locking, timestamps
- · In practice, distributed two-phase locking
 - Simultaneously hold locks at all sites involved
- · Deadlock detection techniques
 - Global wait-for graph (not very practical)
 - Timeouts
- · If deadlock: abort least costly local transaction


Magda Balazinska - CSE 444, Spring 2012


Two-Phase Commit: Motivation Coordinator Subordinate 1 2) COMMIT 1) User decides to commit 3) COMMIT 4) Coordinator crashes What do we do now? Subordinate 2 But I already aborted! Subordinate 3 Magda Balazinska - CSE 444, Spring 2012


Two-Phase Commit Protocol One coordinator and many subordinates Phase 1: prepare Phase 2: commit or abort Log records for 2PC include transaction and coordinator ids Coordinator also logs ids of all subordinates Principle When a process makes a decision: vote yes/no or commit/abort Or when a subordinate wants to respond to a message: ack First force-write a log record (to make sure it survives a failure) Only then send message about decision

Subordinate State Machine

INIT and PREPARED involve waiting

Handling Site Failures

- · Approach 1: no site failure detection
 - Can only do retrying & blocking
- · Approach 2: timeouts
 - Since unilateral abort is ok,
 - Subordinate can timeout in init state
 - Coordinator can timeout in collecting state
 - Prepared state is still blocking
- · 2PC is a blocking protocol

Magda Balazinska - CSE 444, Spring 2012

Site Failure Handling Principles

- · Retry mechanism
 - In prepared state, periodically query coordinator
 - In committing/aborting state, periodically resend messages to subordinates
- If doesn't know anything about transaction respond "abort" to inquiry messages about fate of transaction
- If there are no log records for a transaction after a crash then abort transaction and "forget" it

Magda Balazinska - CSE 444, Spring 2012

15

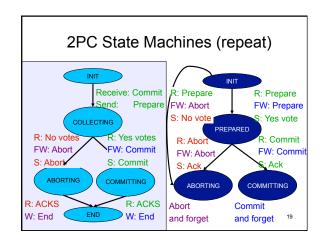
17

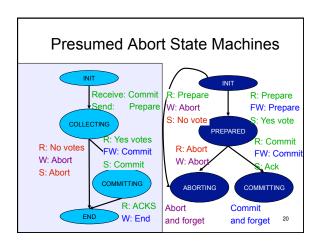
Site Failure Scenarios Examples on the board (please take notes) Receive: Commit R: Prepare R: Prepare Prepare FW: Abort FW: Prepare S: No vote COLLECTING R: Yes votes R: No votes R: Commit R: Abort FW: Abort FW: Commit FW: Commi FW: Abort S: Abort S: Commit S; Ack S: Ack COMMITTING R: ACKS R: ACKS Abort Commit END W: End W: End and forget and forget

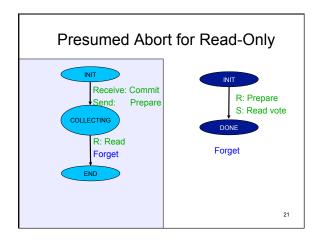
Observations

- Coordinator keeps transaction in transactions table until it receives all acks
 - To ensure subordinates know to commit or abort
 - So acks enable coordinator to "forget" about transaction
- After crash, if recovery process finds no log records for a transaction, the transaction is presumed to have aborted
- Read-only subtransactions: no changes ever need to be undone nor redone

Magda Balazinska - CSE 444, Spring 2012


Presumed Abort Protocol


- · Optimization goals
 - Fewer messages and fewer force-writes
- Principle
 - If nothing known about a transaction, assume ABORT
- · Aborting transactions need no force-writing
- Avoid log records for read-only transactions
 - Reply with a READ vote instead of YES vote
- · Optimizes read-only transactions


Magda Balazinska - CSE 444, Spring 2012

18

14

