
1

CSE 444: Database Internals

Lectures 14

Transactions: Overview +

Concurrency Control using Locking

1 Magda Balazinska - CSE 444, Spring 2012 Magda Balazinska - CSE 444, Spring 2012 2

Outline

•  Transactions motivation, definition, properties
–  344 review

•  Concurrency control and locking
–  Also 344 review

Magda Balazinska - CSE 444, Spring 2012 3

Motivating Example

UPDATE Budget

SET money=money-100
WHERE pid = 1

UPDATE Budget

SET money=money+60

WHERE pid = 2

UPDATE Budget

SET money=money+40

WHERE pid = 3

SELECT sum(money)
FROM Budget

Would like to treat
each group of

instructions as a unit

Magda Balazinska - CSE 444, Spring 2012 4

Definition

•  A transaction = one or more operations, single
real-world transition

•  Examples
–  Transfer money between accounts
–  Purchase a group of products
–  Register for a class (either waitlist or allocated)

Magda Balazinska - CSE 444, Spring 2012 5

Transactions

•  Major component of database systems

•  Critical for most applications; arguably more so
than SQL

•  Turing awards to database researchers:
–  Charles Bachman 1973

–  Edgar Codd 1981 for inventing relational dbs

–  Jim Gray 1998 for inventing transactions

Magda Balazinska - CSE 444, Spring 2012 6

Transaction Example

START TRANSACTION!

UPDATE Budget SET money = money - 100 !

WHERE pid = 1!

UPDATE Budget SET money = money + 60 !

WHERE pid = 2!

UPDATE Budget SET money = money + 40 !

WHERE pid = 3!

COMMIT (or ROLLBACK)!

2

Magda Balazinska - CSE 444, Spring 2012 7

ROLLBACK

•  If the app gets to a place where it can’t
complete the transaction successfully, it can
execute ROLLBACK

•  This causes the system to “abort” the
transaction
–  Database returns to a state without any of the

changes made by the transaction

Magda Balazinska - CSE 444, Spring 2012 8

Reasons for Rollback

•  User changes their mind (“ctl-C”/cancel)

•  Explicit in program, when app program finds a
problem
–  e.g. when qty on hand < qty being sold

•  System-initiated abort
–  System crash

–  Housekeeping
•  e.g. due to timeouts

Magda Balazinska - CSE 444, Spring 2012 9

ACID Properties

•  Atomicity: Either all changes performed by
transaction occur or none occurs

•  Consistency: A transaction as a whole does not
violate integrity constraints

•  Isolation: Transactions appear to execute one
after the other in sequence

•  Durability: If a transaction commits, its changes
will survive failures

Magda Balazinska - CSE 444, Spring 2012 10

What Could Go Wrong?

•  Why is it hard to provide ACID properties?

•  Concurrent operations
–  Isolation problems

–  We saw one example earlier

•  Failures can occur at any time
–  Atomicity and durability problems

–  Later lectures

•  Transaction may need to abort

Magda Balazinska - CSE 444, Spring 2012 11

Different Types of Problems

Client 1: INSERT INTO SmallProduct(name, price)
 SELECT pname, price
 FROM Product

 WHERE price <= 0.99

 DELETE Product
 WHERE price <=0.99

Client 2: SELECT count(*)

 FROM Product

 SELECT count(*)
 FROM SmallProduct

What could go wrong ? Inconsistent reads
Magda Balazinska - CSE 444, Spring 2012 12

Different Types of Problems

Client 1:

 UPDATE Product
 SET Price = Price – 1.99
 WHERE pname = ‘Gizmo’

Client 2:

 UPDATE Product
 SET Price = Price*0.5
 WHERE pname=‘Gizmo’

Lost update What could go wrong ?

3

Magda Balazinska - CSE 444, Spring 2012 13

Different Types of Problems

Client 1: UPDATE SET Account.amount = 1000000000
 WHERE Account.number = ‘my-account’

Client 2: SELECT Account.amount

 FROM Account
 WHERE Account.number = ‘my-account’

What could go wrong ? Dirty reads

Aborted by

system

Magda Balazinska - CSE 444, Spring 2012 14

Types of Problems: Summary

•  Concurrent execution problems
–  Write-read conflict: dirty read (includes inconsistent read)

•  A transaction reads a value written by another transaction that
has not yet committed

–  Read-write conflict: unrepeatable read
•  A transaction reads the value of the same object twice. Another

transaction modifies that value in between the two reads

–  Write-write conflict: lost update
•  Two transactions update the value of the same object. The

second one to write the value overwrite the first change

•  Failure problems
–  DBMS can crash in the middle of a series of updates
–  Can leave the database in an inconsistent state

Magda Balazinska - CSE 444, Spring 2012 15

Outline

•  Transactions motivation, definition, properties

•  Concurrency control and locking

Schedules

•  Given multiple transactions

•  A schedule is a sequence of interleaved actions
from all transactions

Magda Balazinska - CSE 444, Spring 2012 16

Example

T1 T2

READ(A, t) READ(A, s)

t := t+100 s := s*2

WRITE(A, t) WRITE(A,s)

READ(B, t) READ(B,s)

t := t+100 s := s*2

WRITE(B,t) WRITE(B,s)

Magda Balazinska - CSE 444, Spring 2012 17

A Serial Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)
READ(B, t)
t := t+100
WRITE(B,t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

Magda Balazinska - CSE 444, Spring 2012 18

4

Serializable Schedule

•  A schedule is serializable if it is equivalent to a
serial schedule

Magda Balazinska - CSE 444, Spring 2012 19

A Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)

READ(B, t)
t := t+100
WRITE(B,t)

READ(B,s)
s := s*2
WRITE(B,s)

Notice:

This is NOT a serial schedule
Magda Balazinska - CSE 444, Spring 2012 20

A Non-Serializable Schedule

T1 T2
READ(A, t)
t := t+100
WRITE(A, t)

READ(A,s)
s := s*2
WRITE(A,s)
READ(B,s)
s := s*2
WRITE(B,s)

READ(B, t)
t := t+100
WRITE(B,t)

Magda Balazinska - CSE 444, Spring 2012 21

Ignoring Details

•  Sometimes transactions’ actions can commute
accidentally because of specific updates
–  Serializability is undecidable !

•  Scheduler should not look at transaction details

•  Assume worst case updates
–  Only care about reads r(A) and writes w(A)
–  Not the actual values involved

Magda Balazinska - CSE 444, Spring 2012 22

Notation

T1: r1(A); w1(A); r1(B); w1(B)
T2: r2(A); w2(A); r2(B); w2(B)

Magda Balazinska - CSE 444, Spring 2012 23

Conflict Serializability

Conflicts:

ri(X); wi(Y) Two actions by same transaction Ti:

wi(X); wj(X) Two writes by Ti, Tj to same element

wi(X); rj(X)
Read/write by Ti, Tj to same element

ri(X); wj(X)
Magda Balazinska - CSE 444, Spring 2012 24

5

Conflict Serializability

•  A schedule is conflict serializable if it can be
transformed into a serial schedule by a series
of swappings of adjacent non-conflicting
actions

Example:

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

Magda Balazinska - CSE 444, Spring 2012 25

The Precedence Graph Test

Is a schedule conflict-serializable ?
Simple test:
•  Build a graph of all transactions Ti

•  Edge from Ti to Tj if Ti makes an action that
conflicts with one of Tj and comes first

•  The test: if the graph has no cycles, then it is
conflict serializable !

Magda Balazinska - CSE 444, Spring 2012 26

Example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

1 2 3

This schedule is conflict-serializable

A B

Magda Balazinska - CSE 444, Spring 2012 27

Example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

1 2 3

This schedule is NOT conflict-serializable

A

B

B

Magda Balazinska - CSE 444, Spring 2012 28

Conflict Serializability

•  A serializable schedule need not be conflict
serializable, even under the “worst case
update” assumption

w1(Y); w1(X); w2(Y); w2(X); w3(X);

w1(Y); w2(Y); w2(X); w1(X); w3(X);

Lost write

Equivalent, but can’t swap

Magda Balazinska - CSE 444, Spring 2012 29

Scheduler

•  The scheduler is the module that schedules the
transaction’s actions, ensuring serializability

•  How ? We discuss three techniques in class:
–  Locks

–  Timestamps (next lecture)

–  Validation (next lecture)

Magda Balazinska - CSE 444, Spring 2012 30

6

Locking Scheduler

Simple idea:

•  Each element has a unique lock

•  Each transaction must first acquire the lock
before reading/writing that element

•  If lock is taken by another transaction, then wait

•  The transaction must release the lock(s)

Magda Balazinska - CSE 444, Spring 2012 31

Notation

li(A) = transaction Ti acquires lock for element A

ui(A) = transaction Ti releases lock for element A

Magda Balazinska - CSE 444, Spring 2012 32

Example
T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A); L1(B)

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(B);

Scheduler has ensured a conflict-serializable schedule 33

Example

T1 T2
L1(A); READ(A, t)
t := t+100
WRITE(A, t); U1(A);

L2(A); READ(A,s)
s := s*2
WRITE(A,s); U2(A);
L2(B); READ(B,s)
s := s*2
WRITE(B,s); U2(B);

L1(B); READ(B, t)
t := t+100
WRITE(B,t); U1(B);

Locks did not enforce conflict-serializability !!! 34

Two Phase Locking (2PL)

The 2PL rule:

•  In every transaction, all lock requests must
preceed all unlock requests

•  This ensures conflict serializability ! (why?)

Magda Balazinska - CSE 444, Spring 2012 35

Example: 2PL transactions
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Now it is conflict-serializable 36

7

What about Aborts?

•  2PL enforces conflict-serializable schedules

•  But what if a transaction releases its locks and
then aborts?

•  Serializable schedule definition only considers
transactions that commit
–  Relies on assumptions that aborted transactions can

be undone completely

Magda Balazinska - CSE 444, Spring 2012 37

Example with Abort
T1 T2
L1(A); L1(B); READ(A, t)
t := t+100
WRITE(A, t); U1(A)

L2(A); READ(A,s)
s := s*2
WRITE(A,s);
L2(B); DENIED…

READ(B, t)
t := t+100
WRITE(B,t); U1(B);

…GRANTED; READ(B,s)
s := s*2
WRITE(B,s); U2(A); U2(B);

Abort Commit 38

Strict 2PL

•  Strict 2PL: All locks held by a transaction are
released when the transaction is completed

•  Ensures that schedules are recoverable
–  Transactions commit only after all transactions

whose changes they read also commit

•  Avoids cascading rollbacks

Magda Balazinska - CSE 444, Spring 2012 39

Deadlock

•  Transaction T1 waits for a lock held by T2;

•  But T2 waits for a lock held by T3;

•  While T3 waits for

•  . . .

•  . . .and T73 waits for a lock held by T1 !!

•  A deadlock is when two or more transactions
are waiting for each other to complete

Magda Balazinska - CSE 444, Spring 2012 40

41

Handling Deadlock

•  Deadlock avoidance
–  Acquire locks in pre-defined order

–  Acquire all locks at once before starting

•  Deadlock detection
–  Timeouts (but hard to pick the right threshold)

–  Wait-for graph
•  What commercial systems use (they check graph periodically)

Magda Balazinska - CSE 444, Spring 2012

Lock Modes

•  S = shared lock (for READ)
•  X = exclusive lock (for WRITE)

•  U = update lock
–  Initially like S
–  Later may be upgraded to X

•  I = increment lock (for A := A + something)
–  Increment operations commute

Recommended reading: chapter 18.4

Magda Balazinska - CSE 444, Spring 2012 42

8

Magda Balazinska - CSE 444, Spring 2012 43

Lock Granularity

•  Fine granularity locking (e.g., tuples)
–  High concurrency

–  High overhead in managing locks

•  Coarse grain locking (e.g., tables)
–  Many false conflicts

–  Less overhead in managing locks

•  Alternative techniques
–  Hierarchical locking (and intentional locks)

[commercial DBMSs]

–  Lock escalation Recommended reading: chapter 18.6

44

Phantom Problem

•  A “phantom” is a tuple that is invisible during part
of a transaction execution but not all of it.

•  Example:
–  T0: reads list of books in catalog
–  T1: inserts a new book into the catalog
–  T2: reads list of books in catalog: New book appears!

•  Can this occur?
•  Depends on locking details

–  eg, granularity of locks

•  To avoid phantoms needs predicate locking

Magda Balazinska - CSE 444, Spring 2012

The Locking Scheduler

Task 1:
Add lock/unlock requests to transactions

•  Examine all READ(A) or WRITE(A) actions

•  Add appropriate lock requests

•  Ensure 2PL !

Recommended reading: chapter 18.5

Magda Balazinska - CSE 444, Spring 2012 45

The Locking Scheduler

Task 2:
Execute the locks accordingly

•  Lock table: a big, critical data structure in a DBMS !

•  When a lock is requested, check the lock table
–  Grant, or add the transaction to the element’s wait list

•  When a lock is released, re-activate a transaction from
its wait list

•  When a transaction aborts, release all its locks

•  Check for deadlocks occasionally

Recommended reading: chapter 18.5

46 Magda Balazinska - CSE 444, Spring 2012

Magda Balazinska - CSE 444, Spring 2012 47

Degrees of Isolation

•  Isolation level “serializable” (i.e. ACID)
–  Golden standard

–  Requires strict 2PL and predicate locking

–  But often too inefficient

–  Imagine there are only a few update operations and
many long read operations

•  Weaker isolation levels
–  Sacrifice correctness for efficiency

–  Often used in practice (often default)

–  Sometimes are hard to understand

Magda Balazinska - CSE 444, Spring 2012 48

Degrees of Isolation

•  Four levels of isolation
–  All levels use long-duration exclusive locks

–  READ UNCOMMITTED: no read locks

–  READ COMMITTED: short duration read locks

–  REPEATABLE READ:
•  Long duration read locks on individual items

–  SERIALIZABLE:
•  All locks long duration and lock predicates

•  Trade-off: consistency vs concurrency

•  Commercial systems give choice of level + others

