

17

· Heuristic-based optimizers:

- Apply greedily rules that always improve plan
- Typically: push selections down
 Very limited: no longer used today

Cost-based optimizers:

- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan
- We focus on cost-based optimizers

Magda Balazinska - CSE 444, Spring 2012

Three Approaches to Search Space Enumeration

- · Complete plans
- Bottom-up plans
- · Top-down plans

Magda Balazinska - CSE 444, Spring 2012

18

T(R) = 2000 T(S) = 5000 T(T) = 3000 T(U) = 1000	Subquery	Size	Cost	Plan
	RS			
	RT			
	RU			
	ST			
	SU			
	TU			
	RST			
	RSU			
	RTU			
	STU			
	RSTU			

T(R) = 2K T(S) = 5K T(T) = 3K T(U) = 1K	Subquery	Size	Cost	Plan
	RS	100k	0	RS
	RT	60k	0	RT
	RU	20k	0	UR
	ST	150k	0	TS
	SU	50k	0	US
	TU	30k	0	UT
	RST	3M	60k	(RT)S
	RSU	1M	20k	(UR)S
	RTU	600K	20k	(UR)T
	STU	1.5M	30k	(UT)S
	RSTU	30M	60k +50k=110k	(RT)(SU)

- Choose algorithm for each operator
 How much memory do we have ?
 - Are the input operand(s) sorted ?
- Access path selection for base tables
- Decide for each intermediate result:
 - To materialize
 - To pipeline

Magda Balazinska - CSE 444, Spring 2012

41

- $-\,$ Use result from step 1 as the outer relation
- Consider every other possible relation as inner relation
- Estimate cost when using sort-merge or nested-loop join
- Keep the cheapest for each interesting order
- Steps 3 and later: Repeat for three relations, etc.

Magda Balazinska - CSE 444, Spring 2012

43

Selinger Algorithm Example

· On the white board

Magda Balazinska - CSE 444, Spring 2012

44