
1

CSE 444: Database Internals

Lectures 11-12

Query Optimization (part 2)

1 Magda Balazinska - CSE 444, Spring 2012 2

Query Optimization Algorithm

•  Enumerate alternative plans (logical & physical)

•  Compute estimated cost of each plan
–  Compute number of I/Os

–  Compute CPU cost

•  Choose plan with lowest cost
–  This is called cost-based optimization

Magda Balazinska - CSE 444, Spring 2012

3	

Lessons

•  Need to consider several physical plans
–  Even for one, simple logical plan

•  No magic “best” plan: depends on the data

•  In order to make the right choice
–  Need to have statistics over the data

–  The B’s, the T’s, the V’s

Magda Balazinska - CSE 444, Spring 2012 4

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2012

5

Relational Algebra Equivalences

•  Selections
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R))

–  Cascading: σc1∧c2(R) same as σc2(σc1(R))

•  Projections
–  Cascading

•  Joins
–  Commutative : R ⋈ S same as S ⋈ R

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T
Magda Balazinska - CSE 444, Spring 2012

Left-Deep Plans and
Bushy Plans

6

R3 R1 R2 R4 R3 R1

R4

R2

Left-deep plan Bushy plan

Magda Balazinska - CSE 444, Spring 2012

2

Commutativity, Associativity,
Distributivity

7	

R ∪ S = S ∪ R, R ∪ (S ∪ T) = (R ∪ S) ∪ T

R ⨝ S = S ⨝ R, R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T

R ⨝ (S ∪ T) = (R ⨝ S) ∪ (R ⨝ T)

Magda Balazinska - CSE 444, Spring 2012

Laws Involving Selection

8	

 σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R)
 σ C OR C’(R) = σ C(R) ∪ σ C’(R)
 σ C (R ⨝ S) = σ C (R) ⨝ S

 σ C (R – S) = σ C (R) – S
 σ C (R ∪ S) = σ C (R) ∪ σ C (S)
 σ C (R ⨝ S) = σ C (R) ⨝ S

Magda Balazinska - CSE 444, Spring 2012

Assuming C on
attributes of R

9	

Example:
Simple Algebraic Laws

•  Example: R(A, B, C, D), S(E, F, G)
 σ F=3 (R ⨝ D=E S) = ?

 σ A=5 AND G=9 (R ⨝ D=E S) = ?

Magda Balazinska - CSE 444, Spring 2012 10	

Laws Involving Projections

•  Example R(A,B,C,D), S(E, F, G)
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))

ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S))

ΠM(ΠN(R)) = ΠM(R)

 /* note that M ⊆ N */

Magda Balazinska - CSE 444, Spring 2012

Laws involving grouping and
aggregation

11	

Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

δ(γA, agg(B)(R)) = γA, agg(B)(R)

γA, agg(B)(δ(R)) = γA, agg(B)(R)
 if agg is “duplicate insensitive”

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =
 γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D)))

Magda Balazinska - CSE 444, Spring 2012

Laws Involving Constraints

12

Product(pid, pname, price, cid)
Company(cid, cname, city, state)

Foreign key

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product)

Magda Balazinska - CSE 444, Spring 2012

3

Search Space Challenges

•  Search space is huge!
–  Many possible equivalent trees

–  Many implementations for each operator

–  Many access paths for each relation
•  File scan or index + matching selection condition

•  Cannot consider ALL plans
–  Heuristics: only partial plans with “low” cost

Magda Balazinska - CSE 444, Spring 2012 13 14

Outline

•  Search space

•  Algorithm for enumerating query plans

Magda Balazinska - CSE 444, Spring 2012

Key Decisions

Logical plan

•  What logical plans do we consider (left-deep,
bushy ?); Search Space

•  Which algebraic laws do we apply, and in which
context(s) ?; Optimization rules

•  In what order do we explore the search
space ?; Optimization algorithm

15 Magda Balazinska - CSE 444, Spring 2012

Key Decisions

Physical plan

•  What physical operators to use?

•  What access paths to use (file scan or index)?

•  Pipeline or materialize intermediate results?

These decisions also affect the search space

16 Magda Balazinska - CSE 444, Spring 2012

Two Types of Optimizers

•  Heuristic-based optimizers:
–  Apply greedily rules that always improve plan

•  Typically: push selections down

–  Very limited: no longer used today

•  Cost-based optimizers:
–  Use a cost model to estimate the cost of each plan

–  Select the “cheapest” plan

–  We focus on cost-based optimizers

Magda Balazinska - CSE 444, Spring 2012 17

Three Approaches to Search
Space Enumeration

•  Complete plans

•  Bottom-up plans

•  Top-down plans

Magda Balazinska - CSE 444, Spring 2012 18

4

Complete Plans

Magda Balazinska - CSE 444, Spring 2012 19

SELECT *

FROM R, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

⨝

S σA<40

R

⨝

T

⨝

S

σA<40

R

⨝

T

Why is this
search space
inefficient ?

R(A,B)
S(B,C)
T(C,D)

Bottom-up Partial Plans

20

SELECT *

FROM R, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

R S T

⨝

S σA<40

R

⨝

R S

⨝

S σA<40

R

⨝

T

…..

Why is this
better ?

Magda Balazinska - CSE 444, Spring 2012

Top-down Partial Plans

21

SELECT *

FROM R, S, T

WHERE R.B=S.B and S.C=T.C and R.A<40

R(A,B)
S(B,C)
T(C,D)

⨝ σA<40

T
⨝

S

⨝

T

…..

SELECT R.A, T.D
FROM R, S, T

WHERE R.B=S.B
 and S.C=T.C

SELECT *
FROM R, S

WHERE R.B=S.B
 and R.A < 40

SELECT *
FROM R

WHERE R.A < 40

Magda Balazinska - CSE 444, Spring 2012

Two Types of Plan
Enumeration Algorithms

•  Dynamic programming (in class)
–  Based on System R (aka Selinger) style optimizer[1979]

–  Limited to joins: join reordering algorithm

–  Bottom-up

•  Rule-based algorithm (will not discuss)
–  Database of rules (=algebraic laws)

–  Usually: dynamic programming

–  Usually: top-down

Magda Balazinska - CSE 444, Spring 2012 22

23	

Dynamic Programming

Originally proposed in System R [1979]

•  Only handles single block queries:

•  Some heuristics for search space enumeration:
–  Selections down
–  Projections up

–  Avoid cartesian products

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

Magda Balazinska - CSE 444, Spring 2012

Dynamic Programming

•  Search space = join trees

•  Algebraic laws = commutativity, associativity

•  Algorithm = dynamic programming J

Magda Balazinska - CSE 444, Spring 2012 24

5

Selinger Optimizer Algorithm

•  Original Selinger optimizer enumerates different
logical and physical plans at the same time

•  To simplify the discussion, we will first study the
approach considering only logical plans

•  We come back to the actual Selinger
enumeration algorithm at the end of the lecture

Magda Balazinska - CSE 444, Spring 2012 25 26	

Join Trees

•  R1 ⨝ R2 ⨝ …. ⨝ Rn
•  Join tree:

•  A plan = a join tree
•  A partial plan = a subtree of a join tree

R3 R1 R2 R4

Magda Balazinska - CSE 444, Spring 2012

27	

Types of Join Trees

•  Bushy:

R3

R1

R2 R4

R5

Magda Balazinska - CSE 444, Spring 2012 28	

Types of Join Trees

•  Right deep:

R3

R1
R5

R2 R4

Magda Balazinska - CSE 444, Spring 2012

29	

Types of Join Trees

•  Left deep:
–  Work well with existing join algos

•  Nested-loop and hash-join

–  Facilitate pipelining

–  Selinger algorithm considers only those trees

–  Dynamic programming can be used with all trees

R3 R1

R5

R2

R4

Magda Balazinska - CSE 444, Spring 2012 30	

Dynamic Programming

Join ordering:

•  Given: a query R1 ⨝ R2 ⨝ . . . ⨝ Rn

•  Find optimal order

•  Assume we have a function cost() that gives us
the cost of every join tree

Magda Balazinska - CSE 444, Spring 2012

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

6

31	

Dynamic Programming

•  For each subquery Q ⊆{R1, …, Rn} compute
the following:
–  Size(Q) = the estimated size of Q

•  I.e., the cardinality of the result of Q

–  Plan(Q) = a best plan for Q

–  Cost(Q) = the estimated cost of that plan
•  Note: we focus first on logical plans so we will use as cost

estimate the sum of cardinalities of intermediate relations

Magda Balazinska - CSE 444, Spring 2012

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

32	

Dynamic Programming

•  Step 1: For each {Ri}, set:
–  Size({Ri}) = T(Ri)

–  Plan({Ri}) = Ri

•  That’s the only alternative for a logical plan

–  Cost({Ri}) = 0
•  Remember that we are computing costs of logical plans

Magda Balazinska - CSE 444, Spring 2012

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

33	

Dynamic Programming

•  Step 2: For each Q ⊆{R1, …, Rn} involving i
relations:
–  Size(Q) = estimate it recursively

–  For every pair of subqueries Q’, Q’’ s.t. Q = Q’ ∪ Q’’
compute cost(Plan(Q’) ⨝ Plan(Q’’))

–  Cost(Q) = the smallest such cost

–  Plan(Q) = the least-cost plan

Magda Balazinska - CSE 444, Spring 2012

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

34	

Dynamic Programming

•  Step 3: Return Plan({R1, …, Rn})

Magda Balazinska - CSE 444, Spring 2012

SELECT list
FROM R1, …, Rn
WHERE cond1 AND cond2 AND . . . AND condk

35	

Example

We use cost model for logical plans:

•  Cost(P1 ⨝ P2) = Cost(P1) + Cost(P2) +

 size(intermediate results for P1, P2)

•  Cost of a scan = 0

Magda Balazinska - CSE 444, Spring 2012 36	

Example

•  R ⨝ S ⨝ T ⨝ U

•  Assumptions:

Magda Balazinska - CSE 444, Spring 2012

SELECT *
FROM R, S, T, U
WHERE cond1 AND cond2 AND . . .

T(R) = 2000

T(S) = 5000

T(T) = 3000

T(U) = 1000

T(R ⨝ S) = 0.01*T(R)*T(S)

T(S ⨝ T) = 0.01*T(S)*T(T)

etc.

All join selectivities = 1%

7

37	

Subquery	

 Size	

 Cost	

 Plan	

RS	

RT	

RU	

ST	

SU	

TU	

RST	

RSU	

RTU	

STU	

RSTU	

T(R) = 2000

T(S) = 5000
T(T) = 3000

T(U) = 1000

38	

Subquery	

 Size	

 Cost	

 Plan	

RS	

 100k	

 0	

 RS	

RT	

 60k	

 0	

 RT	

RU	

 20k	

 0	

 UR	

ST	

 150k	

 0	

 TS	

SU	

 50k	

 0	

 US	

TU	

 30k	

 0	

 UT	

RST	

 3M	

 60k	

 (RT)S	

RSU	

 1M	

 20k	

 (UR)S	

RTU	

 600K	

 20k	

 (UR)T	

STU	

 1.5M	

 30k	

 (UT)S	

RSTU	

 30M	

 60k
+50k=110k	

 (RT)(SU)	

T(R) = 2K

T(S) = 5K
T(T) = 3K

T(U) = 1K

39	

Reducing the Search Space

•  Restriction 1: only left linear trees (no bushy)

•  Restriction 2: no trees with cartesian product

Magda Balazinska - CSE 444, Spring 2012

R(A,B) ⨝ S(B,C) ⨝ T(C,D)

Plan: (R(A,B)⨝T(C,D)) ⨝ S(B,C)
has a cartesian product.

Most query optimizers will not consider it

Why?

40	

Dynamic Programming: Summary

•  Handles only join queries:
–  Selections are pushed down (i.e. early)
–  Projections are pulled up (i.e. late)

•  Takes exponential time in general, BUT:
–  Left linear joins may reduce time
–  Non-cartesian products may reduce time further

Magda Balazinska - CSE 444, Spring 2012

41	

Completing the
Physical Query Plan

•  Choose algorithm for each operator
–  How much memory do we have ?

–  Are the input operand(s) sorted ?

•  Access path selection for base tables

•  Decide for each intermediate result:
–  To materialize

–  To pipeline

Magda Balazinska - CSE 444, Spring 2012

More about the Selinger Algorithm

Selinger enumeration algorithm considers
•  Different logical and physical plans at the same time

•  Cost of a plan is IO + CPU

•  Concept of interesting order during plan enumeration
–  Same order as that requested by ORDER BY or GROUP GY

–  Attributes that appear in equi-join predicates
•  They can speed-up a sort-merge join later

Magda Balazinska - CSE 444, Spring 2012 42

8

More about the Selinger Algorithm

•  Step 1: Enumerate all access paths for a single relation
–  File scan or index scan

–  Keep the cheapest for each interesting order

•  Step 2: Consider all ways to join two relations
–  Use result from step 1 as the outer relation

–  Consider every other possible relation as inner relation

–  Estimate cost when using sort-merge or nested-loop join
–  Keep the cheapest for each interesting order

•  Steps 3 and later: Repeat for three relations, etc.

Magda Balazinska - CSE 444, Spring 2012 43

Selinger Algorithm Example

•  On the white board

Magda Balazinska - CSE 444, Spring 2012 44

