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CSE 444: Database Internals 

Lectures 11-12  

Query Optimization (part 2) 
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Query Optimization Algorithm 

•  Enumerate alternative plans (logical & physical) 

•  Compute estimated cost of each plan 
–  Compute number of I/Os 

–  Compute CPU cost 

•  Choose plan with lowest cost 
–  This is called cost-based optimization 
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Lessons 

•  Need to consider several physical plans 
–  Even for one, simple logical plan 

•  No magic “best” plan: depends on the data 

•  In order to make the right choice 
–  Need to have statistics over the data 

–  The B’s, the T’s, the V’s 
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Outline 

•  Search space 

•  Algorithm for enumerating query plans 
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Relational Algebra Equivalences 

•  Selections 
–  Commutative: σc1(σc2(R)) same as σc2(σc1(R)) 

–  Cascading:  σc1∧c2(R) same as σc2(σc1(R)) 

•  Projections 
–  Cascading 

•  Joins 
–  Commutative : R ⋈ S same as S ⋈ R  

–  Associative: R ⋈ (S ⋈ T) same as (R ⋈ S) ⋈ T 
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Left-Deep Plans and 
Bushy Plans 
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R3 R1 R2 R4 R3 R1 

R4 

R2 

Left-deep plan Bushy plan 
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Commutativity, Associativity, 
Distributivity  
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R ∪ S = S ∪ R,  R ∪ (S ∪ T) = (R ∪ S) ∪ T 

R ⨝ S = S ⨝ R,  R ⨝ (S ⨝ T) = (R ⨝ S) ⨝ T 

R ⨝ (S ∪ T)  =  (R ⨝ S) ∪ (R ⨝ T) 
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Laws Involving Selection 
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 σ C AND C’(R) = σ C(σ C’(R)) = σ C(R) ∩ σ C’(R) 
 σ C OR C’(R) = σ C(R) ∪ σ C’(R) 
 σ C (R ⨝ S) = σ C (R) ⨝ S  

 σ C (R – S) = σ C (R) – S 
 σ C (R ∪ S) = σ C (R) ∪ σ C (S) 
 σ C (R ⨝ S)  = σ C (R) ⨝ S 
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Assuming C on 
attributes of R 
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Example: 
Simple Algebraic Laws 

•  Example:  R(A, B, C, D), S(E, F, G) 
 σ F=3 (R ⨝ D=E S) =                                     ? 

 σ A=5 AND G=9 (R ⨝ D=E S) =                         ? 
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Laws Involving Projections 

•  Example R(A,B,C,D), S(E, F, G) 
ΠA,B,G(R ⨝ D=E S) = Π ? (Π?(R) ⨝ D=E Π?(S))  

ΠM(R ⨝ S) = ΠM(ΠP(R) ⨝ ΠQ(S))    

 

ΠM(ΠN(R)) = ΠM(R)    

   /* note that M ⊆ N */ 
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Laws involving grouping and 
aggregation 
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Which of the following are “duplicate insensitive” ? 
sum, count, avg, min, max 

δ(γA, agg(B)(R)) = γA, agg(B)(R) 
 
γA, agg(B)(δ(R)) = γA, agg(B)(R)  
          if agg is “duplicate insensitive” 

γA, agg(D)(R(A,B) ⨝ B=C S(C,D)) =   
     γA, agg(D)(R(A,B) ⨝ B=C (γC, agg(D)S(C,D))) 

Magda Balazinska - CSE 444, Spring 2012 

Laws Involving Constraints 
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Product(pid, pname, price, cid) 
Company(cid, cname, city, state) 

Foreign key 

Πpid, price(Product ⨝cid=cid Company) = Πpid, price(Product) 
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Search Space Challenges 

•  Search space is huge! 
–  Many possible equivalent trees 

–  Many implementations for each operator 

–  Many access paths for each relation 
•  File scan or index + matching selection condition 

•  Cannot consider ALL plans 
–  Heuristics: only partial plans with “low” cost 

Magda Balazinska - CSE 444, Spring 2012 13 14 

Outline 

•  Search space 

•  Algorithm for enumerating query plans 
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Key Decisions 

Logical plan  

•  What logical plans do we consider (left-deep, 
bushy ?); Search Space 

•  Which algebraic laws do we apply, and in which 
context(s) ?; Optimization rules 

•  In what order do we explore the search 
space ?; Optimization algorithm 
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Key Decisions 

Physical plan 

•  What physical operators to use? 

•  What access paths to use (file scan or index)? 

•  Pipeline or materialize intermediate results? 

These decisions also affect the search space 
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Two Types of Optimizers 

•  Heuristic-based optimizers: 
–  Apply greedily rules that always improve plan 

•  Typically: push selections down 

–  Very limited: no longer used today 

•  Cost-based optimizers: 
–  Use a cost model to estimate the cost of each plan 

–  Select the “cheapest” plan 

–  We focus on cost-based optimizers 
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Three Approaches to Search 
Space Enumeration 

•  Complete plans 

•  Bottom-up plans 

•  Top-down plans 
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Complete Plans 
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SELECT * 

FROM R, S, T 

WHERE R.B=S.B and S.C=T.C and R.A<40 

⨝ 

S σA<40 

R 

⨝ 

T 

⨝ 

S 

σA<40 

R 

⨝ 

T 

Why is this 
search space 
inefficient ? 

R(A,B) 
S(B,C) 
T(C,D) 

Bottom-up Partial Plans 
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SELECT * 

FROM R, S, T 

WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

R S T 

⨝ 

S σA<40 

R 

⨝ 

R S 

⨝ 

S σA<40 

R 

⨝ 

T 

….. 

Why is this 
better ? 
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Top-down Partial Plans 
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SELECT * 

FROM R, S, T 

WHERE R.B=S.B and S.C=T.C and R.A<40 

R(A,B) 
S(B,C) 
T(C,D) 

⨝ σA<40 

T 
⨝ 

S 

⨝ 

T 

….. 

SELECT R.A, T.D 
FROM R, S, T 

WHERE R.B=S.B 
        and S.C=T.C 

SELECT * 
FROM R, S 

WHERE R.B=S.B 
        and R.A < 40 

SELECT * 
FROM R 

WHERE R.A < 40 
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Two Types of Plan 
Enumeration Algorithms 

•  Dynamic programming  (in class) 
–  Based on System R (aka Selinger) style optimizer[1979] 

–  Limited to joins: join reordering algorithm 

–  Bottom-up 

•  Rule-based algorithm (will not discuss) 
–  Database of rules (=algebraic laws) 

–  Usually: dynamic programming 

–  Usually: top-down 
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Dynamic Programming 

Originally proposed in System R [1979] 

•  Only handles single block queries: 

•  Some heuristics for search space enumeration:  
–  Selections down 
–  Projections up 

–  Avoid cartesian products 

SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Dynamic Programming 

•  Search space = join trees 

•  Algebraic laws = commutativity, associativity 

•  Algorithm = dynamic programming J 
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Selinger Optimizer Algorithm 

•  Original Selinger optimizer enumerates different 
logical and physical plans at the same time 

•  To simplify the discussion, we will first study the 
approach considering only logical plans 

•  We come back to the actual Selinger 
enumeration algorithm at the end of the lecture 
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Join Trees 

•  R1 ⨝ R2 ⨝ …. ⨝ Rn 
•  Join tree: 

 
•  A plan = a join tree 
•  A partial plan = a subtree of a join tree 

R3 R1 R2 R4 
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Types of Join Trees 

•  Bushy: 

R3 

R1 

R2 R4 

R5 
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Types of Join Trees 

•  Right deep: 

R3 

R1 
R5 

R2 R4 
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Types of Join Trees 

•  Left deep: 
–  Work well with existing join algos 

•  Nested-loop and hash-join 

–  Facilitate pipelining 

–  Selinger algorithm considers only those trees 

–  Dynamic programming can be used with all trees 

R3 R1 

R5 

R2 

R4 
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Dynamic Programming 

Join ordering: 

•  Given: a query  R1 ⨝ R2 ⨝ . . . ⨝ Rn 

•  Find optimal order 

•  Assume we have a function cost() that gives us 
the cost of every join tree 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 



6 

31	



Dynamic Programming 

•  For each subquery Q ⊆{R1, …, Rn} compute 
the following: 
–  Size(Q) = the estimated size of Q 

•  I.e., the cardinality of the result of Q  

–  Plan(Q) = a best plan for Q 

–  Cost(Q) = the estimated cost of that plan 
•  Note: we focus first on logical plans so we will use as cost 

estimate the sum of cardinalities of intermediate relations 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Dynamic Programming 

•  Step 1: For each {Ri}, set: 
–  Size({Ri}) = T(Ri) 

–  Plan({Ri}) = Ri 

•  That’s the only alternative for a logical plan 

–  Cost({Ri}) = 0  
•  Remember that we are computing costs of logical plans 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Dynamic Programming 

•  Step 2: For each Q ⊆{R1, …, Rn} involving i 
relations: 
–  Size(Q) = estimate it recursively  

–  For every pair of subqueries Q’, Q’’ s.t. Q = Q’ ∪ Q’’ 
compute cost(Plan(Q’) ⨝ Plan(Q’’)) 

–  Cost(Q) = the smallest such cost 

–  Plan(Q) = the least-cost plan 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Dynamic Programming 

•  Step 3: Return Plan({R1, …, Rn}) 
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SELECT list 
FROM    R1, …, Rn 
WHERE cond1 AND cond2 AND . . . AND condk 
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Example 

We use cost model for logical plans: 
 
•  Cost(P1 ⨝ P2) = Cost(P1) + Cost(P2) + 

                  size(intermediate results for P1, P2) 

•  Cost of a scan = 0 
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Example 

•  R ⨝ S ⨝ T ⨝ U 

•  Assumptions: 
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SELECT * 
FROM    R, S, T, U 
WHERE cond1 AND cond2 AND . . .  

T(R) = 2000 

T(S) = 5000 

T(T) = 3000 

T(U) = 1000 

T(R ⨝ S) = 0.01*T(R)*T(S)  

T(S ⨝ T)  = 0.01*T(S)*T(T)  

etc. 

All join selectivities = 1% 
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Subquery	

 Size	

 Cost	

 Plan	



RS	



RT	



RU	



ST	



SU	



TU	



RST	



RSU	



RTU	



STU	



RSTU	



T(R) = 2000 

T(S) = 5000 
T(T) = 3000 

T(U) = 1000 

38	



Subquery	

 Size	

 Cost	

 Plan	



RS	

 100k	

 0	

 RS	



RT	

 60k	

 0	

 RT	



RU	

 20k	

 0	

 UR	



ST	

 150k	

 0	

 TS	



SU	

 50k	

 0	

 US	



TU	

 30k	

 0	

 UT	



RST	

 3M	

 60k	

 (RT)S	



RSU	

 1M	

 20k	

 (UR)S	



RTU	

 600K	

 20k	

 (UR)T	



STU	

 1.5M	

 30k	

 (UT)S	



RSTU	

 30M	

 60k
+50k=110k	

 (RT)(SU)	



T(R) = 2K 

T(S) = 5K 
T(T) = 3K 

T(U) = 1K 
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Reducing the Search Space  

•  Restriction 1: only left linear trees (no bushy) 

•  Restriction 2: no trees with cartesian product 
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R(A,B) ⨝ S(B,C) ⨝ T(C,D) 

Plan: (R(A,B)⨝T(C,D))  ⨝  S(B,C) 
has a cartesian product. 

Most query optimizers will not consider it 

Why? 
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Dynamic Programming: Summary 

•  Handles only join queries: 
–  Selections are pushed down (i.e. early) 
–  Projections are pulled up (i.e. late) 

•  Takes exponential time in general, BUT: 
–  Left linear joins may reduce time 
–  Non-cartesian products may reduce time further 
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Completing the  
Physical Query Plan 

•  Choose algorithm for each operator 
–  How much memory do we have ? 

–  Are the input operand(s) sorted ? 

•  Access path selection for base tables 

•  Decide for each intermediate result: 
–  To materialize 

–  To pipeline 
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More about the Selinger Algorithm 

Selinger enumeration algorithm considers 
•  Different logical and physical plans at the same time 

•  Cost of a plan is IO + CPU 

•  Concept of interesting order during plan enumeration 
–  Same order as that requested by ORDER BY or GROUP GY 

–  Attributes that appear in equi-join predicates  
•  They can speed-up a sort-merge join later 
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More about the Selinger Algorithm 

•  Step 1: Enumerate all access paths for a single relation 
–  File scan or index scan 

–  Keep the cheapest for each interesting order 

•  Step 2: Consider all ways to join two relations 
–  Use result from step 1 as the outer relation 

–  Consider every other possible relation as inner relation 

–  Estimate cost when using sort-merge or nested-loop join 
–  Keep the cheapest for each interesting order 

•  Steps 3 and later: Repeat for three relations, etc. 
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Selinger Algorithm Example 

•  On the white board 
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