CSE 444: Database Internals

Lectures 11-12
Query Optimization (part 2)

Magda Balazinska - CSE 444, Spring 2012

Query Optimization Algorithm

- Enumerate alternative plans (logical \& physical)
- Compute estimated cost of each plan
- Compute number of I/Os
- Compute CPU cost
- Choose plan with lowest cost
- This is called cost-based optimization

Lessons

- Need to consider several physical plans
- Even for one, simple logical plan
- No magic "best" plan: depends on the data
- In order to make the right choice
- Need to have statistics over the data
- The B's, the T's, the V's

Relational Algebra Equivalences

- Selections

- Commutative: $\sigma_{c 1}\left(\sigma_{c 2}(R)\right)$ same as $\sigma_{c 2}\left(\sigma_{c 1}(R)\right)$
- Cascading: $\sigma_{\mathrm{c} 1 \text { ^c2 }}(R)$ same as $\sigma_{\mathrm{c} 2}\left(\sigma_{\mathrm{c} 1}(R)\right)$
- Projections
- Cascading
- Joins
- Commutative : $R \bowtie S$ same as $S \bowtie R$
- Associative: $R \bowtie(S \bowtie T)$ same as $(R \bowtie S) \bowtie T$

Magda Balazinska - CSE 444, Spring 2012

Commutativity, Associativity, Distributivity
$\begin{aligned} & R \cup S=S \cup R, R \cup(S \cup T)=(R \cup S) \cup T \\ & R \bowtie S=S \bowtie R, R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T \end{aligned}$
$R \bowtie(S \cup T)=(R \bowtie S) \cup(R \bowtie T)$

Laws Involving Selection

```
\sigma
\sigma C ORC'
\mp@subsup{\sigma}{C}{}}(R\bowtieS)=\mp@subsup{\sigma}{C}{}(R)\bowtie
```

```
\sigma C (R-S) = 的 (R) - S
\mp@subsup{\sigma}{C}{}}(R\cupS)=\mp@subsup{\sigma}{C}{}(R)\cup\mp@subsup{\sigma}{C}{}(S
\sigma}C(R\bowtieS)=\mp@subsup{\sigma}{C}{}(R)\bowtieS ,\quad\begin{array}{l}{\mathrm{ Assuming C on}}\\{\mathrm{ attributes of }R}

\section*{Example: \\ Simple Algebraic Laws}
- Example: R(A, B, C, D), S(E, F, G)
\(\sigma_{F=3}\left(R \bowtie_{D=E} S\right)=\) \(?\)
\(\sigma_{A=5 \text { AND } G=9}\left(R \bowtie_{D=E} S\right)=\quad\) ?

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Laws Involving Constraints} \\
\hline Fore & \\
\hline Product(pid, pname, price, cid) Company(cid, cname, city, state) & \\
\hline \(\Pi_{\text {pid, price }}\left(\right.\) Product \(\bowtie_{\text {cidecid }}\) Company \()=\Pi_{\text {pid, price }}(\) Product \()\) & \\
\hline Magda Bazainska - cSE 444, Spring 2012 & \({ }^{12}\) \\
\hline
\end{tabular}

\section*{Search Space Challenges}
- Search space is huge!
- Many possible equivalent trees
- Many implementations for each operator
- Many access paths for each relation
- File scan or index + matching selection condition
- Cannot consider ALL plans
- Heuristics: only partial plans with "low" cost

\section*{Key Decisions}

Logical plan
- What logical plans do we consider (left-deep, bushy ?); Search Space
- Which algebraic laws do we apply, and in which context(s) ?; Optimization rules
- In what order do we explore the search space ?; Optimization algorithm

\section*{Two Types of Optimizers}
- Heuristic-based optimizers:
- Apply greedily rules that always improve plan
- Typically: push selections down
- Very limited: no longer used today
- Cost-based optimizers:
- Use a cost model to estimate the cost of each plan
- Select the "cheapest" plan
- We focus on cost-based optimizers

\section*{Three Approaches to Search Space Enumeration}
- Complete plans
- Bottom-up plans
- Top-down plans
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{Complete Plans} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& R(A, B \\
& S(B, C \\
& T(C, D
\end{aligned}
\]} & SELECT *
FROM R, S, T
WHERE R.B=S.B and S.C=T. & and R.A<40 \\
\hline & Magda Balazinska - CSE 444, Spring 2012 & Why is this search space inefficient? \\
\hline
\end{tabular}



\section*{Two Types of Plan Enumeration Algorithms}
- Dynamic programming (in class)
- Based on System R (aka Selinger) style optimizer[1979]
- Limited to joins: join reordering algorithm
- Bottom-up
- Rule-based algorithm (will not discuss)
- Database of rules (=algebraic laws)
- Usually: dynamic programming
- Usually: top-down

\section*{Dynamic Programming}

Originally proposed in System R [1979]
- Only handles single block queries:
SELECT list
FROM R1, ... Rn
WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond
k
- Some heuristics for search space enumeration:

\section*{Dynamic Programming}
- Search space = join trees
- Algebraic laws = commutativity, associativity
- Algorithm = dynamic programming \(\odot\)
- Selections down
- Projections up
- Avoid cartesian products

\section*{Selinger Optimizer Algorithm}
- Original Selinger optimizer enumerates different logical and physical plans at the same time
- To simplify the discussion, we will first study the approach considering only logical plans
- We come back to the actual Selinger enumeration algorithm at the end of the lecture

\section*{Types of Join Trees}
- Bushy:


Magda Balazinska - CSE 444, Spring 2012

\section*{Types of Join Trees}
- Right deep:

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Types of Join Trees} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
- Left deep: \\
- Work well with existing join algos \\
- Nested-loop and hash-join \\
- Facilitate pipelining
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{- Selinger algorithm considers only those trees} \\
\hline \multicolumn{2}{|l|}{- Dynamic programming can be used with all trees} \\
\hline Magda Balazinska - CSE 444, Spring 2012 & \\
\hline
\end{tabular}

\section*{Dynamic Programming}

Join ordering:
- Given: a query \(\mathrm{R} 1 \bowtie \mathrm{R} 2 \bowtie \ldots \bowtie \mathrm{Rn}\)
- Find optimal order
- Assume we have a function cost() that gives us the cost of every join tree
\begin{tabular}{|l|}
\hline SELECT list \\
FROM R1, ... Rn \\
WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond
\end{tabular}

\section*{Dynamic Programming}
- For each subquery \(\mathrm{Q} \subseteq\{\mathrm{R} 1, \ldots, \mathrm{Rn}\}\) compute the following:
- Size(Q) = the estimated size of Q
- I.e., the cardinality of the result of \(Q\)
- Plan(Q) = a best plan for \(Q\)
\(-\operatorname{Cost}(\mathrm{Q})=\) the estimated cost of that plan
- Note: we focus first on logical plans so we will use as cost estimate the sum of cardinalities of intermediate relations
\begin{tabular}{ll|}
\hline \begin{tabular}{l} 
SELECT list \\
FROM R1, ... Rn \\
WHERE cond \({ }_{1}\) AND cond \(_{2}\) AND . . . AND cond
\end{tabular} \\
\hline
\end{tabular}

\section*{Dynamic Programming}
- Step 2: For each \(Q \subseteq\left\{R_{1}, \ldots, R_{n}\right\}\) involving \(i\) relations:
- Size(Q) = estimate it recursively
- For every pair of subqueries Q', Q" s.t. Q = Q' \(\cup\) Q" compute cost(Plan(Q') \(\left.\bowtie \operatorname{Plan}\left(Q^{\prime \prime}\right)\right)\)
\(-\operatorname{Cost}(Q)=\) the smallest such cost
- Plan(Q) = the least-cost plan
\begin{tabular}{l|}
\hline \begin{tabular}{l} 
SELECT list \\
FROM R1, ..., Rn \\
WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond
\end{tabular} \\
\hline Magda Balazinska - CSE 444, Spring 2012
\end{tabular}

\section*{Example}

We use cost model for logical plans:
- \(\operatorname{Cost}\left(\mathrm{P}_{1} \bowtie \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+\) size(intermediate results for \(\mathrm{P}_{1}, \mathrm{P}_{2}\) )
- Cost of a scan = 0

\section*{Dynamic Programming}
- Step 1: For each \(\left\{\mathrm{R}_{\mathrm{i}}\right\}\), set:
\(-\operatorname{Size}\left(\left\{R_{i}\right\}\right)=T\left(R_{i}\right)\)
\(-\operatorname{Plan}\left(\left\{R_{j}\right\}\right)=R_{i}\)
- That's the only alternative for a logical plan
\(-\operatorname{Cost}(\{R\})=0\)
- Remember that we are computing costs of logical plans

SELECT list
WHERE cond \({ }_{1}\) AND cond \({ }_{2}\) AND . . . AND cond \(_{k}\)
Magda Balazinska - CSE 444, Spring 2012

\section*{Dynamic Programming}
- Step 3: Return Plan \(\left(\left\{\mathrm{R}_{1}, \ldots, \mathrm{R}_{n}\right\}\right)\)

SELECT list
WHERE cond \({ }_{1}\) AND cond \(_{2}\) AND . . . AND cond \({ }_{k}\)
Example
We use cost model for logical plans:
- \(\operatorname{Cost}\left(\mathrm{P}_{1} \bowtie \mathrm{P}_{2}\right)=\operatorname{Cost}\left(\mathrm{P}_{1}\right)+\operatorname{Cost}\left(\mathrm{P}_{2}\right)+\)
size \(\left(\right.\) intermediate results for \(\left.\mathrm{P}_{1}, \mathrm{P}_{2}\right)\)
- Cost of a scan \(=0\)

Magda Balazinsta - CsE E44, Spring 2012
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Subquery
\end{tabular} & Size & Cost & Plan \\
\hline \begin{tabular}{l}
\(\mathrm{T}(\mathrm{R})=2000\) \\
\(\mathrm{~T}(\mathrm{~S})=5000\) \\
\(\mathrm{~T}(\mathrm{~T})=3000\) \\
\(\mathrm{~T}(\mathrm{U})=1000\)
\end{tabular} \\
\hline RS & & & \\
\hline RT & & & \\
\hline RU & & & \\
\hline ST & & & \\
\hline SU & & & \\
\hline TU & & & \\
\hline RST & & & \\
\hline RSU & & & \\
\hline RTU & & & \\
\hline STU & & & \\
\hline RSTU & & & \\
\hline
\end{tabular}

\section*{Reducing the Search Space}
- Restriction 1: only left linear trees (no bushy)

Why?
- Restriction 2: no trees with cartesian product
\(R(A, B) \bowtie S(B, C) \bowtie T(C, D)\)
Plan: \((R(A, B) \bowtie T(C, D)) \bowtie S(B, C)\)
has a cartesian product.
Most query optimizers will not consider it

\section*{Dynamic Programming: Summary}
- Handles only join queries:
- Selections are pushed down (i.e. early)
- Projections are pulled up (i.e. late)
- Takes exponential time in general, BUT:
- Left linear joins may reduce time
- Non-cartesian products may reduce time further

\section*{Completing the Physical Query Plan}
- Choose algorithm for each operator
- How much memory do we have ?
- Are the input operand(s) sorted ?
- Access path selection for base tables
- Decide for each intermediate result:
- To materialize
- To pipeline

\section*{More about the Selinger Algorithm}

Selinger enumeration algorithm considers
- Different logical and physical plans at the same time
- Cost of a plan is IO + CPU
- Concept of interesting order during plan enumeration
- Same order as that requested by ORDER BY or GROUP GY
- Attributes that appear in equi-join predicates
- They can speed-up a sort-merge join later

\section*{More about the Selinger Algorithm}
- Step 1: Enumerate all access paths for a single relation - File scan or index scan
- Keep the cheapest for each interesting order
- Step 2: Consider all ways to join two relations - Use result from step 1 as the outer relation
- Consider every other possible relation as inner relation
- Estimate cost when using sort-merge or nested-loop join
- Keep the cheapest for each interesting order
- Steps 3 and later: Repeat for three relations, etc.

\section*{Selinger Algorithm Example}
- On the white board```

