CSE 444: Database Internals

Lecture 4
Data storage and buffer management

Magda Balazinska - CSE 444, Spring 2012 1

Important Note
» Lectures show principles

* You need to think through what you will
actually implement in SimpleDB!
— Try to implement the simplest solutions

« If you are confused between the lectures and
the labs, tell us!

Magda Balazinska - CSE 444, Spring 2012 2

DBMS Architecture
Admission Control
[_Query Rewrite]
Memory Mgr
Optimizer
Disk Space Mgr
Executor
Replication Services
Process Manager || Query Processor Admin Utilities
[Access Methods | [Buffer Manager | Shared Utilities
[Lock Manager | [Log Manager] | [Anatomy of a Db System.
J. Hellerstein & M. Stonebraker.
Storage Manager Red Book. 4ed] R

Today: Starting at the Bottom

* Operators: Process data
\ Operators: Sequential Scan, etc. \ « Access methods:

Query Processor Organize data to support

fast access to desired

[Access Methods: HeapFile, etc.]| Subsets of records
+ Buffer manager: Caches

Storage Manager data in memory. Reads/

writes data to/from disk as

Disk Space Mgr needed

» Disk-space manager:

e — Allocates space on disk
Data on disk for files/access methods
4

HeapFile In SimpleDB

Sequental Sean For data caching
M HeapFile and for transactions

API for Operators
* insert/delete tuple

* Iterate over tuples Buffer Manager

API for Buffer Manager
« read/write data to/from disk

(N T —
Data on disk: OS Files

No disk space manager

General HeapFile Operations

» Create or destroy a file

« Insert a record

» Delete a record with a given rid (rid)
— rid: unique tuple identifier (more later)

* Get a record with a given rid
— Not necessary for sequential scan operator
— But used with indexes (more next lecture)

» Scan all records in the file

Magda Balazinska - CSE 444, Spring 2012 6

Design Exercise

+ Let's try to design a HeapFile
* We need to provide API from previous slide
* We need to cache data using buffer pool

» Design choice: One OS file for each relation

— This does not always have to be the casel! (e.g.,
SQLite uses one file for whole database)

An OS file provides an API of the form
— Seek to some position (or “skip” over B bytes)
— Read/Write B bytes

Magda Balazinska - CSE 444, Spring 2012 7

First Principle: Work with Pages

» Reading/writing to/from disk
— Seeking takes a long time!
— Reading sequentially is fast

« To simplify buffer manager, want to cache a
collection of same-sized objects

» Solution: Read/write pages of data
— A page should correspond to a disk block

Magda Balazinska - CSE 444, Spring 2012 8

Buffer Manager

Page requests from higher-level code

Access methods
Buffer pool Buffer pool manager
Disk page
pag Main
Free frame—— memory
Disk is a collection 1 page corresponds
of blocks to 1 disk block
Magda Balazinska - CSE 444, Spring 2012 9

Buffer Manager

 Brings pages in from memory and caches them
« Eviction policies

— Random page (ok for SimpleDB)

— Least-recently used

— The “clock” algorithm (see whiteboard or book)
» Keeps track of which pages are dirty

— A dirty page has changes not reflected on disk

— Implementation: Each page includes a dirty bit

Magda Balazinska - CSE 444, Spring 2012 10

Continuing our Design
Next key questions:

» How do we organize pages into a file?
* How do we organize data within a page?

Magda Balazinska - CSE 444, Spring 2012 1

Heap File Implementation 1
Linked list of pages: —<— > Y >

Data Data Data
page page page
A
— _/
Header '
page Full pages
~ T~ ~ N
Data Data Data
page page page
[S
) o J
In SimpleDB, N

use even
simpler design

Pages with some free space
Magda Balazinska - CSE 444, Spring 2012 12

Heap File Implementation 2

Page Formats
Better: directory of pages

Issues to consider
Data)))
Header page page + 1 page = 1 disk block = fixed size (e.g. 8KB)
Records:

% — Fixed length
Data

— Variable length
page * Recordid = RID
— Typically RID = (PagelD, SlotNumber)

. et . 5
Directory Why do we need RID’s in a relational DBMS 7
Data See discussion about indexes next lecture
Directory contains free-space count for each page. | Page

Faster inserts for variable-length records
Magda Balazinska - CSE 444, Spring 2012

Magda Balazinska - CSE 444, Spring 2012 14

Page Format Approach 1 Page Format Approach 2

Fixed-length records: packed representation

LT[[[[essmel [[]]]

Slot, Slot, Sloty
| ‘ ‘ ‘ ‘ [Freespace [N | Slot directory
‘ Each slot contains
<record offset, record length>
Problems ? Number of records

How to handle variable-length records?
Need to move records for each deletion, changing RIDs

Magda Balazinska - CSE 444, Spring 2012

Can handle variable-length records
Can move tuples inside a page without changing RIDs

Magda Balazinska - CSE 444, Spring 2012 16

Record Formats Record Formats

Fixed-length records — Each field has a fixed length

Variable length records
(i.e., it has the same length in all the records)

- R ————

|HH Field 1 Field 2 ‘ “ Field K
Field 1 ‘ Field 2 ‘ ‘ ‘ Field K |

)

Record header

Information about field lengths and types is in the catalog

Remark: NULLS require no space at all (why ?)

Magda Balazinska - CSE 444, Spring 2012 17 Magda Balazinska - CSE 444, Spring 2012 18

Long Records Across Pages

page page
header header
R1 R2 V// R2 R3 ?
1

* When records are very large

Or even medium size: saves space in blocks
« Commercial RDBMSs avoid this

Magda Balazinska - CSE 444, Spring 2012

Modifications: Insertion

File is unsorted (= heap file)

— add it wherever there is space (easy ©)

File is sorted
— Is there space on the right page ?
* Yes: we are lucky, store it there
— Is there space in a neighboring page ?
« Look 1-2 pages to the left/right, shift records
— If anything else fails, create overflow page

Magda Balazinska - CSE 444, Spring 2012

Modifications: Deletions

+ Free space in page, shift records
— Be careful with slots

— RIDs for remaining tuples must NOT change

* May be able to eliminate an overflow page

Magda Balazinska - CSE 444, Spring 2012 2

LOB

Large objects
— Binary large object: BLOB
— Character large object: CLOB

Supported by modern database systems
E.g. images, sounds, texts, etc.

Storage: attempt to cluster blocks together

Magda Balazinska - CSE 444, Spring 2012

Overflow Pages

Page,

Page,

Pagey.

Overflow

» After a while the file starts being dominated by
overflow pages: time to reorganize

Magda Balazinska - CSE 444, Spring 2012 22

Modifications: Updates

* If new record is shorter than previous, easy ©
« Ifitis longer, need to shift records
— May have to create overflow pages

Magda Balazinska - CSE 444, Spring 2012

Alternate Storage Manager
Design: Column Store

BN

Columns stored
contiguously on disk
(no headers needed) ,;

Rows stored
contiguously on disk
(+ tuples headers)

More Detailed Example

Row-based Column-based
(4 pages) (4 pages)
Al [1] C-Store also
Page{ ﬁ ; A [2] avoids large
LA [2] tuple headers
A2 A 2
Al2 -
[B12] B 4
BLa) [c] [a] [Faee
cl4 C 4
Cl| 4 Magda Balazinska - CSE 444, Spring 2012 26

Conclusion

Row-store storage managers are most
commonly used today

They offer high-performance for transactions
But column-stores win for analytical workloads
They are gaining traction in that area

Final discussion: OS vs DBMS
— OS files vs DBMS files
— OS buffer manager vs DBMS buffer manager

Magda Balazinska - CSE 444, Spring 2012 27

