Section &

Pig Latin

Outline

 Based on Pig Latin: A not-so-foreign language for data
processing, by Olston, Reed, Srivastava, Kumar, and Tomkins,
2008

Pig Engine Overview

Data model = loosely typed nested relations
Query model = a sql-like, dataflow language

Execution model:
— Option 1: run locally on your machine

— Option 2: compile into sequence of map/reduce, run
on a cluster supporting Hadoop

Main idea: use Optl to debug, Opt2 to execute

Example

* |[nput: a table of urls:
(url, category, pagerank)

* Compute the average pagerank of all
sufficiently high pageranks, for each category

* Return the answers only for categories with
sufficiently many such pages

First in SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 10°

..then in Pig-Latin

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good_urls) > 10°
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)

Pig Latin combines
* high-level declarative querying in the spirit of SQL, and
* low-level, procedural programming a la map-reduce.

Types in Pig-Latin

Atomic: string or number, e.g. ‘Alice’ or 55
Tuple: (‘Alice’, 55, ‘salesperson’)

Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’, 44, ‘manager’), ...}

Maps: we will try not to use these

Types in Pig-Latin

Bags can be nested |

* {3} 11,4,3}), (’c’1}), (d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

* S0, 51, $2, ...

T =

(o]

(‘lakers’, 1)
“iPod’, 2
II)

} | “age’ —;2&])

Let fields of tuple t be called £1, £2, £3

Expression Type Example Value for t
Constant ‘bob’ Independent of t
Field by position $0 ‘alice’
Field by name £3 | ‘age’ — 20 |
- (‘lakers’)
Projection £2.%0 { (¢iPod’)
Map Lookup f3# age’ 20
Function Evaluation SUM(f2.$1) 1+2=23
Conditional f3#‘age’ >187 .
. dult’
Expression ‘adult’: ‘minor’ adt
, ‘lak S |
Flattening FLATTEN(£2) =2

“iPod’, 2

Loading data

* |[nput data = FILES !
— Heard that before ?

* The LOAD command parses an input file into a
bag of records

* Both parser (=“deserializer”) and output type
are provided by user

Loading data

queries = LOAD ‘query_log.txt’
USING myLoad()
AS (userID, queryString, timeStamp)

Loading data

* USING userfuction() --is optional
— Default deserializer expects tab-delimited file
e AS type —is optional

— Default is a record with unnamed fields; refer to them
as SO, S1, ...

 The return value of LOAD is just a handle to a bag
— The actual reading is done in pull mode, or parallelized

FOREACH

expanded queries =
FOREACH queries
GENERATE userld, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions
Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

expanded queries =
FOREACH queries

GENERATE userld,
flatten(expandQuery(queryString))

Now we get a flat collection

queries:

(userld, queryString, timestamp) ~
FOREACH queries GENERATE (alice, {Hgﬁzﬁ;ﬁgﬁ:g} :»)
(alice, lakers, 1) expandQuery{queryString) y

(bob, iPod, 3)

(without flattening) > (1Pod nano) A
beb, ~(iPod shuffle)

-

{alice, lakers rumors)
(alice, lakers news)
{(bob, 1Pod nanc)
(bob, iPod shuffle)

with flattenin

15

FLATTEN

Note that it is NOT a first class function !

e First class FLATTEN:
— FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}
— Type: {{T}} = {T}
* Pig-latin FLATTEN
— FLATTEN({4,5,6}) =4, 5, 6
—Type: T} DT T,T,..,T ?22???

FILTER

Remove all gueries from Web bots:

real _queries = FILTER queries BY userld neq ‘bot’

Better: use a complex UDF to detect Web bots:

real _queries = FILTER queries
BY NOT isBot(userld)

JOIN

results: {(queryString, url, position)}
revenue: {(queryString, adSlot, amount)}

join_result = JOIN results BY queryString
revenue BY queryString

join_result : {(queryString, url, position, adSlot, amount)}

results:
(queryString, url, rank)

revenue:
(queryString, adSlot, amount)

JOIN

19

GROUP BY

revenue: {(queryString, adSlot, amount)}

grouped_revenue = GROUP revenue BY queryString
guery_revenues =
FOREACH grouped_revenue
GENERATE queryString,
SUM(revenue.amount) AS totalRevenue

grouped_revenue: {(queryString, {(adSlot, amount)})}
guery_revenues: {(queryString, totalRevenue)}

Cogroup

* A generic way to group tuples from two
datasets together

Co-Group

Dataset 1 results: {(queryString, url, position)}
Dataset 2 revenue: {(queryString, adSlot, amount)}

grouped data =
COGROUP results BY queryString,
revenue BY queryString;

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

What is the output type in general ?

{group_id, bag dataset 1, bag dataset 2}

results:

{lakers, espn.com, 2

Co-Group

(kings, nhl.com, 1) A
(kings, nba.com, 2) —r

revenue:
(queryString, adSlot, amount)

{lakers, top, 587 —
(lakers, side, 2@}_
(kings, top, 39@)
(kings, side, 187

(e]

grouped data: (group, results, revenue)

{lakers, nba.com, 1)

(querystring, url, rank)
lakers, (lakers, espn.com, Z2)
(lakers, nba.com, 1) COGROUP

(kings, nhl.com, 1)
(kings, nba.com, 2)

o

-t

-

-

-t

A

A

=

Y

-

e

(lakers, top, 58)
(lakers, side, 28)

{kings, top, 3@)
(kings, side, 1@)

23

Co-Group

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

url_revenues = FOREACH grouped_data
GENERATE
FLATTEN(distributeRevenue(results, revenue));

distributeRevenue is a UDF that accepts search results and
revenue information for a query string at a time,
and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

grouped_data: {(queryString, results:{(url, position)},
revenue:{(adSlot, amount)})}

grouped_data = COGROUP results BY queryString,
revenue BY queryString;
join_result = FOREACH grouped_data
GENERATE FLATTEN(results),
FLATTEN(revenue);

Result is the same as JOIN

Asking for Output: STORE

STORE query _revenues INTO myoutput’
USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

This is when the entire query is finally executed!

First in SQL...

SELECT category, AVG(pagerank)
FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 10°

..then in Pig-Latin

good_urls = FILTER urls BY pagerank > 0.2
groups = GROUP good_urls BY category
big_groups = FILTER groups
BY COUNT(good_urls) > 10°
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank)

Pig Latin combines
* high-level declarative querying in the spirit of SQL, and
* low-level, procedural programming a la map-reduce.

Another Example

raw (from, to, amount date)

raw2 (name, phonenumber)

In Pig, how would we write
SELECT from, SUM(amount) *
FROM transactions *

GROUP BY from

SQL
SELECT from, SUM(amount) *
FROM transactions *
GROUP BY from

PIG

grouped = GROUP raw BY from;

grouped2 = FOREACH grouped GENERATE SO as from,
SUM(raw.amount) as total;

Another Example Extended

In Pig, how would we write
SELECT from, SUM(amount) *
FROM transactions *

GROUP BY from

HAVING SUM(amount) >= 150 * ORDER BY
SUM(amount) DESC;

grouped = GROUP raw BY from;

grouped2 = FOREACH grouped GENERATE SO as
from, SUM(raw.amount) as total;

grouped3 = FILTER grouped?2 BY (total >= 150);
grouped4 = ORDER grouped3 BY total DESC;

Implementation

* Over Hadoop !
* Parse query:
— All between LOAD and STORE = one logical plan

* Logical plan = ensemble of MapReduce jobs
— Each (CO)Group becomes a MapReduce job
— Other ops merged into Map or Reduce operators

Implementation

map, reduce, map; reduce;map; , reduce;,,
Load » filter | » group |------------ » COgroup ----p cngr:nm —
L, 4 C, ...

34

Query Processing Steps

