
Section 8

Pig Latin

Outline

• Based on Pig Latin: A not-so-foreign language for data
processing, by Olston, Reed, Srivastava, Kumar, and Tomkins,
2008

2

Pig Engine Overview

• Data model = loosely typed nested relations
• Query model = a sql-like, dataflow language

• Execution model:
– Option 1: run locally on your machine
– Option 2: compile into sequence of map/reduce, run

on a cluster supporting Hadoop

• Main idea: use Opt1 to debug, Opt2 to execute

3

Example

• Input: a table of urls:
(url, category, pagerank)

• Compute the average pagerank of all
sufficiently high pageranks, for each category

• Return the answers only for categories with
sufficiently many such pages

4

First in SQL…

5

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

…then in Pig-Latin

6

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups

BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank)

Pig Latin combines

• high-level declarative querying in the spirit of SQL, and

• low-level, procedural programming a la map-reduce.

Types in Pig-Latin

• Atomic: string or number, e.g. ‘Alice’ or 55

• Tuple: (‘Alice’, 55, ‘salesperson’)

• Bag: {(‘Alice’, 55, ‘salesperson’),
(‘Betty’,44, ‘manager’), …}

• Maps: we will try not to use these

7

Types in Pig-Latin

Bags can be nested !

• {(‘a’, {1,4,3}), (‘c’,{ }), (‘d’, {2,2,5,3,2})}

Tuple components can be referenced by
number

• $0, $1, $2, …

8

9

Loading data

• Input data = FILES !

– Heard that before ?

• The LOAD command parses an input file into a
bag of records

• Both parser (=“deserializer”) and output type
are provided by user

10

Loading data

11

queries = LOAD ‘query_log.txt’

USING myLoad()

AS (userID, queryString, timeStamp)

Loading data

• USING userfuction() -- is optional

– Default deserializer expects tab-delimited file

• AS type – is optional

– Default is a record with unnamed fields; refer to them
as $0, $1, …

• The return value of LOAD is just a handle to a bag

– The actual reading is done in pull mode, or parallelized

12

FOREACH

13

expanded_queries =

FOREACH queries

GENERATE userId, expandQuery(queryString)

expandQuery() is a UDF that produces likely expansions

Note: it returns a bag, hence expanded_queries is a nested bag

FOREACH

14

expanded_queries =

FOREACH queries

GENERATE userId,

flatten(expandQuery(queryString))

Now we get a flat collection

15

FLATTEN

Note that it is NOT a first class function !

• First class FLATTEN:

– FLATTEN({{2,3},{5},{},{4,5,6}}) = {2,3,5,4,5,6}

– Type: {{T}}  {T}

• Pig-latin FLATTEN

– FLATTEN({4,5,6}) = 4, 5, 6

– Type: {T}  T, T, T, …, T ?????

16

FILTER

17

real_queries = FILTER queries BY userId neq ‘bot’

Remove all queries from Web bots:

real_queries = FILTER queries

BY NOT isBot(userId)

Better: use a complex UDF to detect Web bots:

JOIN

18

join_result = JOIN results BY queryString

revenue BY queryString

results: {(queryString, url, position)}

revenue: {(queryString, adSlot, amount)}

join_result : {(queryString, url, position, adSlot, amount)}

19

GROUP BY

20

grouped_revenue = GROUP revenue BY queryString

query_revenues =

FOREACH grouped_revenue

GENERATE queryString,

SUM(revenue.amount) AS totalRevenue

revenue: {(queryString, adSlot, amount)}

grouped_revenue: {(queryString, {(adSlot, amount)})}

query_revenues: {(queryString, totalRevenue)}

Cogroup

• A generic way to group tuples from two
datasets together

21

Co-Group

22

grouped_data =

COGROUP results BY queryString,

revenue BY queryString;

Dataset 1 results: {(queryString, url, position)}

Dataset 2 revenue: {(queryString, adSlot, amount)}

grouped_data: {(queryString, results:{(url, position)},

revenue:{(adSlot, amount)})}

What is the output type in general ?

{group_id, bag dataset 1, bag dataset 2}

Co-Group

23

Co-Group

24

url_revenues = FOREACH grouped_data

GENERATE

FLATTEN(distributeRevenue(results, revenue));

grouped_data: {(queryString, results:{(url, position)},

revenue:{(adSlot, amount)})}

distributeRevenue is a UDF that accepts search results and

revenue information for a query string at a time,

and outputs a bag of urls and the revenue attributed to them.

Co-Group v.s. Join

25

grouped_data = COGROUP results BY queryString,

revenue BY queryString;

join_result = FOREACH grouped_data

GENERATE FLATTEN(results),

FLATTEN(revenue);

grouped_data: {(queryString, results:{(url, position)},

revenue:{(adSlot, amount)})}

Result is the same as JOIN

Asking for Output: STORE

26

STORE query_revenues INTO `myoutput'

USING myStore();

Meaning: write query_revenues to the file ‘myoutput’

This is when the entire query is finally executed!

First in SQL…

27

SELECT category, AVG(pagerank)

FROM urls

WHERE pagerank > 0.2

GROUP By category

HAVING COUNT(*) > 106

…then in Pig-Latin

28

good_urls = FILTER urls BY pagerank > 0.2

groups = GROUP good_urls BY category

big_groups = FILTER groups

BY COUNT(good_urls) > 106

output = FOREACH big_groups GENERATE

category, AVG(good_urls.pagerank)

Pig Latin combines

• high-level declarative querying in the spirit of SQL, and

• low-level, procedural programming a la map-reduce.

Another Example

raw (from, to, amount date)

raw2 (name, phonenumber)

In Pig, how would we write

SELECT from, SUM(amount) *

FROM transactions *

GROUP BY from

SQL

SELECT from, SUM(amount) *

FROM transactions *

GROUP BY from

PIG

grouped = GROUP raw BY from;

grouped2 = FOREACH grouped GENERATE $0 as from,
SUM(raw.amount) as total;

Another Example Extended

In Pig, how would we write

SELECT from, SUM(amount) *

FROM transactions *

GROUP BY from

HAVING SUM(amount) >= 150 * ORDER BY
SUM(amount) DESC;

grouped = GROUP raw BY from;

grouped2 = FOREACH grouped GENERATE $0 as
from, SUM(raw.amount) as total;

grouped3 = FILTER grouped2 BY (total >= 150);

grouped4 = ORDER grouped3 BY total DESC;

Implementation

• Over Hadoop !

• Parse query:

– All between LOAD and STORE  one logical plan

• Logical plan  ensemble of MapReduce jobs

– Each (CO)Group becomes a MapReduce job

– Other ops merged into Map or Reduce operators

33

Implementation

34

Query Processing Steps

Pig Latin
program

