Introduction to Database Systems
CSE 444

Lecture 26: Distributed Transactions

Announcements

» Wrap-up lecture on Friday

Short review + example problems on the board

» Project 4 due this Friday

Don’t forget to terminate your jobs!!!

» Course evaluations at the end of this lecture

» Today: Distributed transactions

Because you loved transactions so much the first time

Partitioned data

Employee
TID eid name city age salary
tl | 53666 Jones Madras |28 35k
t2 | 53688 Smith Chicago |38 32k
' t3]|53650 |Smith | Chicago |29 48k
. t4 |53831 | Madayan | Bombay |41 |20k
' t5 |53832 |Guldu |Bombay |32 ; |20k

Y /

Vertical Fragment - F
Horizontal Fragment

Distributed Data

log
UPDATE Employee 7
SET salary=salary+2k
WHERE age>30

Distributed Catalog

» How do we identify a relation?

Naming issues:
local name + birth site = global relation name
+replica_id = global replica name

» Centralized catalog
Vulnerable to single-site failure
Compromizes site autonomy

» R* approach:
Local catalog describing all local relations

Birth site also keeps track of replicas and fragments
Could be cached at other sites

Remember Transactions?
» ACID

» Distributed Concurrency Control

How can locks for objects be managed?
How can deadlocks be detected?

» Distributed Recovery

Atomicity and Durability need to be enforced across sites

» In a distributed setting, a Xact spawns subtransactions

Distributed Lock management

» Centralized
one site deals with lock and unlock requests

» Primary Copy

One copy of an object is designated as primary, and requests
are handled at that site

» Fully Distributed
Manage requests locally

Deadlock detection

» Local and global waits-for graphs

S O m—)

At site A

At site B

Global waits-for graph

» 3 algorithms:
Construct global waits-for graph periodically at a centralized site
Construct waits-for graphs hierarchically
Abort long waiting transactions

» Phantom Deadlocks!

Distributed Recovery

» Either all subtransactions must commit or none of them
» Regular logging + commit protocol

» The transaction manager at the originating site is the
coordinator

» The transaction managers at the subtransactions’ sites
are the subordinates

2 Phase Commit: Motivation

1. User decides to commit 2. commit

T

coordinator
subordinate 1

4. coordinator crash! 3. commit

subordinate 2

But | already aborted ®

subordinate 3

2 Phase Commit

» Use 2 phases: a voting phase and a termination phase

» Principle:
When a process makes a decision, it votes yes/no or commit/
abort
A subordinate acknowledges messages (acks)
Force-write log record before sending
Log records include Xact and coordinator ids
Coordinator logs ids of subordinates

2 Phase Commit: Phase 1

1. User decides to commit

coordinator

4. yes

2. prepare

T

4. yes

2. prepare

4. yes

2. prepare

subordinate 3

3. force-write prepare

subordinate 1

3. force-write prepare

subordinate 2

3. force-write prepare

2 Phase Commit: Phase 2

1. Force-write commit

coordinator
5. Write end then

forget Xact .

4. ack

2. commit

Xact is now committed

T

4. ack

2. commit

4. ack

2. commit

subordinate 3
3. force-write commit

5. Commit Xact and
forget it

subordinate 1
3. force-write commit

5. Commit Xact and
forget it

subordinate 2

3. force-write commit

5. Commit Xact and
forget it

2 Phase Commit: Phase 1 with abort

1. User decides to commit

coordinator

4. no

2. prepare
4. yes subordinate 1
3. force-write prepare
2. prepare
4.n0
subordinate 2
2. prepare .
3. force-write abort
5. Abort Xact and
subordinate 3 forget it

3. force-write abort

5. Abort Xact and
forget it

2 Phase Commit: Phase 2

1. Force-write abort

coordinator
5. Write end then

forget Xact

2. abort

T

4. ack

subordinate 3

subordinate 1

3. force-write abort

5. Abort Xact and
forget it

subordinate 2

Restart after failure

» How do we know if we are coordinator or subordinate,
and what do we do?

» We see a commit or abort record
We are coordinator: send to subordinates until we get an ack

» We see a prepare record
We are subordinate: contact coordinator to determine status

» We see no prepare, commit or abort
We can unilaterally abort Any issues?

Refinement: 2PC with presumed abort

» Observations:
Coordinator waits for acks to ‘forget’ Xact

no information = abort
A reader does not care for commit/abort outcome

» Refinements:
If abort is decided, remove Xact from Xact table immediately
If | get an abort msg, no need to ack

The abort log record of the coordinator does not need the
subordinate list

Abort records don’t need to be force-written

A reader Xact votes reader instead of yes/no

Coordinator does not need to communicate further with readers
If all are readers, no need for the 2" phase

