Version March 4, 2011

Introduction to Database Systems
CSE 444, Winter 2011

Lectures 21-23: Query Optimization

Where we are / and where we go

Data Storage and
Indexing
lecture 16

Homework 2 due

Query Processing

Overview
Database Tuning Relational Algebra lecture 19
Feb 14 . ur
lecture 17 lecture 18
Project 3 due
Query
Feb 21 No class Operator Optimization
(Presidents Day) Algorithms

Feb 28

Query Optimization

Query Optimization

Homework 3 due

Review Relational Algebra

Supplier(sid, sname, scity, sstate) sname

Supply(sid, pno, quantity)

o scity= ‘Seattle’ A sstate= ‘WA’ A pno=2

SELECT sname

FROM Supplier x, Supply y

WHERE x.sid = y.sid =< sid = sic
and y.pno = 2 / \
and x.scity = ‘Seattle’
and x.sstate = ‘WA’ Supplier Supply

Give a relational algebra expression for this query:

! sname(O scity= ‘Seattle’ A sstate= “"WA’ A pno=2 (Suppller X sid = sid Supply))

Key Idea: Algebraic Optimization

N = ((z*2)+((z*3)+y))/x
Givenx=1,y =0, and z = 4, solve for N.

In what order did you perform the
operations?

And how many operations?

Key Idea: Algebraic Optimization

N =((z*2)+((z*3)+0))/1

Givenx=1,y =0, and z = 4, solve for N again,
but now assume:

* costs 10 units

+ costs 2 units

/ costs 50 units

Which execution plan offers the lowest cost?

Key Idea: Algebraic Optimization

N =((z*2)+((z*3)+0))/1

Algebraic Laws:

1. (+) identity: X+0 = Xx

2. (/) identity: x/1 =X

3. (*) distributes: (n*x+n*y) = n*(x+y)
4. (*) commutes: Xx*y = y*x

Apply rules 1, 3, 4, 2:
N = (243)*z

two operations instead of five, no division operator

Optimization with Relational Algebra

SELECT sname Supplier(sid, sname, scity, sstate)
FROM Supplier x, Supply y Supply(sid, pno, quantity)

WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’
n sname(O scity= ‘Seattle’ A sstate= "WA’ A pno=2 (Suppller X sid = sid Supply))

Here is a different relational algebra expression for this query:

T sname((g scity= ‘Seattle’ A sstate= ‘WA’ Supplier)[] sid = sid (o pno=2 Supply))

Query Optimization Goal: h
For a query, there may exist many logical and physical query
\plans. Query Optimizer needs to pick a "good" one. y

Hands-on Example

SELECT sname
FROM Supplier x, Supply y
WHERE x.sid = y.sid
and y.pno =2
and x.scity = ‘Seattle’
and x.sstate = ‘WA’

Supplier(sid, sname, scity, sstate)
Supply(sid, pno, quantity)

» Some statistics
T(Supplier) = 1000 records
T(Supply) = 10,000 records
B(Supplier) = 100 pages
B(Supply) = 100 pages
V(Supplier,scity) = 20
V(Supplier,state) = 10
V(Supply,pno) = 2,500
Both relations are clustered
M=10

Supplier(sid, sname, scity, sstate)

Physical Query Plan 1 [supplysid, pno, quantity)

T(Supplier) = 1,000 B(Supplier) = 100 V(Supplier, scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier, state) = 10
V(Supply, pno) = 2,500

®(On the fly) T sname @ = B(Supplier)+B(Supplier)*B(Supply)/M
=100 + 100°100/10 =1,100 1/Os
(2 (On the fly) _ _
@ @ Selection and project on-the-fly
O scity= ‘Seattle’ A sstate= "WA’ A pno=2 -> No additional cost.

(1) (Block-nested loop) .

=]

sid = sid
Supplier Supply
(File scan) (File scan)

Cost =1,100 1/Os

Supplier(sid, sname, scity, sstate)

PhYSlca]. Query P].an 2 Supply(sid, pno, quantity)

T(Supplier) = 1,000 B(Supplier) = 100 V(Supplier, scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier, state) = 10
V(Supply, pno) = 2,500

(On the fly) T Independence assumption

Sshname { \

@ =100 + 100°1/20°1/10 =100.5 = 101

=100+ 100°1/2500 = 101
(3)(Sort-merge join) [><] @ i /

sid = sid (3 =B(T1)+B(T2)=1+1=2
1 p;lg/e/ 1 page
(D(Scan writeto T1) (2)(Scanwyite to T2)
Gscity= ‘Seattle’ A sstate= ‘WA’ 0pno=2
Supplier Supply
(File scan) (File scan)

Cost= 204 1/0s

Supplier(sid, sname, scity, sstate)

Physical Query Plan 3 | supplysid, pno, quantity)

T(Supplier) = 1,000 B(Supplier) = 100 V(Supplier, scity) = 20 M=10
T(Supply) = 10,000 B(Supply) = 100 V(Supplier, state) = 10

V(Supply, pno) = 2,500
(On the fly) T chame

(On the fly) .

O scity= ‘Seattle’ Asstate= ‘WA’

(D =B(Supply)/V(Supply,pno) ~

(2 (Index nested loop) @ -4
sid = sid each of the 4 tuples
@ (u dex) /tuples will have a different sid
se index
pno =2
Supply Supplier
(Clustered Index (Clustered Index

lookup on pno) lookup on sid) Cost=~ 5 |/Os

Simplifications

» In the previous examples, we assumed that all index
pages were in memory

» When this is not the case, we need to add the cost of
fetching index pages from disk

Query Optimization Goal / Algorithm

» Query Optimization Goal

For a query, there exist many logical and physical plans. Query
optimizer needs to pick a good one. How?

» Query Optimization Algorithm
Enumerate alternative plans
Compute estimated cost of each plan
Compute both number of I/Os, and CPU cost
Choose plan with lowest cost
This is called cost-based optimization

Lessons

» Need to consider several physical plan
even for one, simple logical plan

» No magic “best” plan: depends on the data

» In order to make the right choice

need to have statistics over the data
theB's, the T s, theV's

Outline

Search space

Algorithm for enumerating query plans

Estimating the cost of a query plan

Relational Algebra Equivalences

» Selections
Commutative: 0_,(0_,(R)) same as 0_,(0_(R))
Cascading: 0.,,(R) same as 0_,(0(R))

» Projections

projections can be added as long as all attributes are kept that
are used in later operators or the results

» Joins

Commutative : R~ S same as S > R
Associative: R> (S>T) same as (R>S) =T

Left-Deep Plans and Bushy Plans

e
~ N

P R3

N
R1 R2

Left-deep plan

<]
N

R4 / \

Rl/ \RZ

Bushy plan

4 relations:

* # different tree shapes =5

* # different orders =41 =24

* # different join trees =5 * 24 =120

/\

R4

Commutativity, Associativity, Distributivity

RUS=SUR, RU(SUT)=(RUS)UT
RMS=SMR, RX(SXT)=(RXS)XT

RX(SUT) = (RXS)U (RNXT)

Example

Which plan is more efficient:
RX(SXT) or (RXS)XT?

» Assumptions: /Note: sometimes defined differently!
Every join selectivity is 10%
Thatis: T(RX S)=0.1 * T(R) * T(S) etc.
B(R)=100, B(S) = 50, B(T)=500
All joins are main memory joins
All intermediate results are materialized

Laws involving selection:

Ocannc (R)=0 (0 (R))=0¢c(R)No(R)
Ocorc(R)=0(R)U o (R)

6c(R-S)=0¢(R)—S
0c(RUS)=0(R)Uac(S)
O0c(RXS) =0 (R)XS

When C involves
only attributes of R

Example: Simple Algebraic Laws

» Example: R(A, B, C, D), S(E, F, G)

Of_3 (R S)="7
=R Mp¢ (O3 5)

Op=s anp G=9 (R Mpg S) = ?
= Op=5 (069 (R M5 S))

= (Op=s R) Mpg (0629 S))

Laws Involving Projections

[Iy(R X S) = My(Ip(R) X T1g(S))

IT,(ITy(R)) = IIw(R)
[* note that M € N */

» Example R(A,B,C,D), S(E, F, G)
Mp g c(R X pg S) = 1T, (II(R) X p_g T1(S))

Laws involving grouping and aggregation

O(Ya agg(B)(R)) = Ya, agg(B)(R)

YA, agg(B)(é(R)) = Ya, agg(B)(R)

if agg is “duplicate insensitive”

Which of the following are “duplicate insensitive” ?
sum, count, avg, min, max

Laws Involving Constraints

Product(pid, pname, price, cid)}- Foreign key

Company(cid, cname, city, state)

I1

(Product X ;4_.;g Company) =11, ...(Product)

pid, price

Need a second constraint for this law to hold. Which ?

Example

Foreign key

Product(pid, pname, price, cid)—
& not null

Company(cid, cname, city, state)

CREATE VIEW CheapProductCompany
SELECT *
FROM Product x, Company y
WHERE x.cid = y.cid and x.price < 100

SELECT pname, price SELECT pname, price
FROM CheapProductCompany FROM Product
WHERE price < 100

Laws with Semijoins

Recall the definition of a semijoin:

Remember from lecture 18:

» RXS =11 Al An (R X S) Semijoins in Distributed Databases

» Semijoins are used in distributed databases

Dependents

Employee

SSN Dname Age

» Where the schemas are:
Input: R(A1,...An), S(B1,...,Bm)
Output: T(A1,...,An) Employeel<] i _qn (0 ,ger71 (Dependents))

SSN Name

network

R = Employee X T o~ T=Tts (0 oges7: (Dependents))
= Employee

Answer = R ™ Dependents

©

/ RMS=(RXS)X S

Observe the "dangling" triangle,
doesn't "join" with any content,
poor lonely triangle ®

Laws with Semijoins

» Example:
Q =R(A,B) X S(B,C)

» A reducer is:
R,(A,B) = R(A,B) X S(B,C)

» The rewritten query is:
Q = R,(A,B) X S(B,C)

RXS=(RXS)X S

Why else would we do this ?

Why Would We Do This ?

» Large attributes:

Q=R(A B,D,EF,.)XSB,CMKL..

» Expensive side computations

Q= (VA,B,count(*)R(A'B'D)) X (0C=valueS(B'C))

Rl(AIBID) = R(A,B,D) X 0szalue(S(BlC))
Q= (VA,B,count(*)Rl(A'B'D)) X (0C=valueS(B'C))

Laws with Semijoins

» Example:
Q =R(A,B) X S(B,C)

» A reducer is:
R,(A,B) = R(A,B) X S(B,C)

» The rewritten query is:
Q = R,(A,B) X S(B,C)

Are there dangling tuples ?

Laws with Semijoins

» Example:
Q =R(A,B) X S(B,C)

» A full reducer is:

R,(A,B) = R(A,B) X S(B,C)
S,(B,C) = S(B,C) X R,(A,B)

» The rewritten query is:
Q=R,(A,B) XS, (B,C)

No more dangling tuples

Laws with Semijoins

» More complex example:

R S T
Q = R(A,B) X S(B,C) X T(C,D,E)

» A full reducer is: Query Hypergraph

S'(B,C) = S(B,C) X R(A,B)
T'(C,D,E) = T(C,D,E) X S'(B,C)
s"(B,C) = S'(B,C) X T'(C,D,E)
R'(A,B) =R (A,B) X S"(B,C)

Q= R'(A,B) X S"(B,C) X T'(C,D,E)

Laws with Semijoins

» Example:
Q= R(A,B) X S(B,C) X T(A,C)

Cyclic Query Hypergraph

» Doesn’ t have a full reducer (we can reduce forever)

» Theorem: A query has a full reducer iff it is acyclic
(see Chapter 20.4)

(if interested, you find the proof in the book
[1995, Database Theory, by Abiteboul, Hull, Vianu])

After all the examples, now

LaWS Wlth SemijOinS the overview slide at the end!

Semijoins
» Given a query: Q=R; XR,X...XR

» A semijoin reducer for Qis |R; =R X Ry
Ri; =R % RJZ
Rlp - Rip a RJIO

» such that the query is equivalent to:

Q=R XR,X...XR

» A full reducer is such that no dangling tuples remain

Example with Semijoins

Emp(eid, ename, sal, did) [PODS'98, by Chaudhuri]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

. CREATE VIEW DepAvgSal As

View: SELECT E.did, Avg(E.Sal) AS avgsal
FROM EmpE
GROUP BY E.did)

Query: SELECT E.eid, E.sal
FROM Emp E, Dept D, DepAvgSal V
WHERE E.did = D.did and D.budget > 100k
and E.age <30 and E.did =V.did
and E.sal > V.avgsal

Goal: compute only the necessary part of the view

Example with Semijoins

Emp(eid, ename, sal, did) [PODS'98, by Chaudhuri]

Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW LimitedAvgSal As (
New view SELECT E.did, Avg(E.Sal) AS avgsal
uses a reducer: FROM EmpE, Dept D
WHERE E.did = D.did and D.buget > 100k
GROUP BY E.did)

New Query: SELECT E.eid, E.sal
FROM EmpE, Dept D, LimitedAvgSal V

WHERE E.did = D.did and D.budget > 100k
and E.age <30 and E.did =V.did
and E.sal > V.avgsal

Example with Semijoins

Emp(eid, ename, sal, did) [PODS'98, by Chaudhuri]
Dept(did, dname, budget)
DeptAvgSal(did, avgsal) /* view */

CREATE VIEW PartialResult AS
(SELECT E.eid, E.sal, E.did
FROM EmpE, Dept D
WHERE E.did=D.did and E.age < 30
Full reducer: and D.budget > 100k)

CREATE VIEW Filter AS
(SELECT DISTINCT P.did FROM PartialResult P)

CREATE VIEW LimitedDepAvgSal AS
(SELECT E.did, Avg(E.Sal) AS avgsal
FROM EmpE, Filter F
WHERE E.did = F.did
GROUP BY E.did)

Example with Semijoins

\ . SELECT P.eid, P.sal
ew query:. FROM PartialResult P, LimitedDepAvgSal V
WHERE P.did =V.did

and P.sal >V.avgsal

E.eid, E.sal
p E, Dept epAvgSal V
WHERE E.did=8.did and E.did = V.did
.age<30an udget > 100k
and E.sal > V.avgsal

Original query:

Search Space Challenges

» Search space is huge!
Many possible equivalent trees
Many implementations for each operator
Many access paths for each relation
File scan or index + matching selection condition

» Cannot consider ALL plans
Heuristics: only partial plans with "low" cost

Outline

» Search space

» Algorithm for enumerating query plans

» Estimating the cost of a query plan

Key Decisions

» Logical plan

What logical plans do we consider (left-deep, bushy ?)
Search Space

Which algebraic laws do we apply, and in which context(s) ?
Optimization rules

In what order do we explore the search space ?
Optimization algorithm

» Physical plan
What physical operators to use?
What access paths to use (file scan or index)?

Optimizers

» Heuristic-based optimizers:
Apply greedily rules that always improve
Typically: push selections down
Very limited: no longer used today

» Cost-based optimizers
Use a cost model to estimate the cost of each plan
Select the “cheapest” plan

The Search Space
» 1. Complete plans
» 2. Bottom-up plans

» 3. Top-down plans

Seach Space 1: Complete

SELECT * R(A,B)
FROM R,S, T S(B,C)
WHERE R.B=S.B T(C,D)
and S.C=T.C
and R.A<40

/M\ "\

Plans

AT e e

Opcso 9 R

R

Why is this
search space
inefficient ?

Seach Space 2: Bottom-up Partial Plans

SELECT * R(A,B)
FROM R,S, T S(B,C) Why is this
WHERE RB=SB T(C D) i
and S.C=T.C il
and R.A<40

/" \
/" \ /" \
O-A‘<4O / X \ O-A'<4O / X \ OA‘<4O

R R S R S T R

Seach Space 3: Top-down Partial Plans

SELECT * R(A,B)
FROM R,S, T S(B,C)
WHERE R.B=S.B T(C,D)
and S.C=T.C
and R.A<40

X
/ \ / \ c)-A<40
T SELECT R.A, T.D
SELECT * FROM RS, T
FROM R,S

WHERE R.B=S.B
WHERE R.B=S.B and S.C=T.C = e

SELECT *
and R.A<40 FROM R

WHERE R.A<40

Plan Enumeration Algorithms

» Dynamic programming (in class)
Classical algorithm [1979]
Limited to joins: join reordering algorithm
Bottom-up

» Rule-based algorithm (will not discuss)
Database of rules (=algebraic laws)
Usually: dynamic programming
Usually: top-down

Dynamic Programming

Originally proposed in System R [1979]
» Only handles single block queries:

SELECT list
FROM R1, .., Rn
WHERE cond,
and cond,
and
and cond,

» Heuristics: selections down, projections up

Dynamic Programming

» Search space = join trees
» Algebraic laws = commutativity, associativity

» Algorithm = dynamic programming ©

Join Trees

» RIXR2 X X Rn

» Join tree: / \

» Aplan=ajoin tree
» A partial plan = a subtree of a join tree

Types of Join Trees

P DX DX
~
/N< h R4 N/ \N 4 /N\N
R3
RO TANYVAN PN
D< < R1 >
N RS R3 I\ R2 R4 s/ O\
R3 R1 A1 RS R2 R4
Left-deep plan Bushy plan Right-deep plan
relations 4 5 6 7

3

2 5 14 42 132
6 24 120 720 5040
2 120 1680 >30k >665k

tree shapes
permutations
join trees

NN RN

. . SELECT list
Dynamic Programming fom &i,..#n
WHERE cond, and ... and cond,

Join ordering:

» Given:aquery RIXR2X...XRn
» Find optimal order

» Assume we have a function cost() that gives us the cost
of every join tree

. . SELECT list
Dynamic Programming fom &i,..#n
WHERE cond; and

» For each subquery Q €{R1, ..., Rn} compute the
following:
Size(Q) = the estimated size of Q
Plan(Q) = a best plan for Q
Cost(Q) = the estimated cost of that plan

... and cond,

. . SELECT list
Dynamic Programming fom &i,..#n
WHERE cond; and ... and cond,

» Step 1: For each {R}, set:
Size({R,}) = B(R))
Plan({R}) = R.
Cost({R.}) = (cost of scanning R,)

SELECT list

Dynamic Programming rrom Ri,..Rn
WHERE cond, and ... and cond,

» Step 2: For each Q &{R,, ..., R, } involving i relations:
Size(Q) = estimate it recursively

For every pair of subqueries Q’, Q" s.t. Q=Q U Q"
compute cost(Plan(Q’) X Plan(Q"))

_h }) What'’s a
Cost(Q) = the smallest such cost reasonable
Plan(Q) = the corresponding plan estimate?

» Step 3: Return Plan({R,, ..., R.})

Example: RX S X T X U

To illustrate, ad-hoc cost model (from the book ©):

» Cost(P, X P,) = Cost(P,) + Cost(P,) +
size(intermediate results for P,, P,)

» Costofascan=0

» Further assumptions: All join selectivities = 1%

T(R) = 2000 T(R™XS) =0.01*T(R)*T(S)
T(S) = 5000 T(SXT) =0.01*T(S)*T(T)
T(T) = 3000 etc.

T(U) =1000

Subquery

Size

Cost

Plan

RS

RT

RU

ST

SU

TU

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) =1000

RST

RSU

RTU

STU

RSTU

T(R) = 2000
T(S) = 5000
T(T) = 3000
T(U) =1000

Subquery Size Cost Plan
RS 0 RS
RT “I!I!'P 0 RT
RU 20k 0 RU
ST ‘I!In’i 0 ST
SU 50k 0 SU
TU 30k \ 0 TU
RST 3M (RT)S
RSU 1M 20k (RU)S
RTU 0.6M 20k (RU)T
STU 1.5M 30k (TU)S

RSTU 30M 60k (RT)(SU)

+50k=110k

Reducing the Search Space

» Restriction 1: only linear trees (no bushy)

Most systems restrict the search space to left-deep plans. Note that for some join algorithms, there
exist different conventions about which is the build and which is the probe relation. The convention
of our textbook (see example 16.31 p.818) assumes the build relation on the left, and hence calls
right-deep plans those with several build relations in main memory. Don't let this detail confuse
you. In practice it does not matter, as the optimizer does not actually "draw" these trees. The fact

that they are linear is the only thing that matters.

» Restriction 2: no trees with cartesian product

R(A,B) X S(B,C) X T(C,D)

Plan: (R(A,B)XT(C,D)) X S(B,C)
has a cartesian product.
Most query optimizers will not consider it

Dynamic Programming: Summary

» Handles only join queries:
Selections are pushed down (i.e. early)
Projections are pulled up (i.e. late)

» Takes exponential time in general, BUT:
Left linear joins may reduce time
Non-cartesian products may reduce time further

Rule-Based Optimizers

» Extensible collection of rules
Rule = Algebraic law with a direction

» Algorithm for firing these rules
Generate many alternative plans, in some order
Prune by cost

» Volcano (later SQL Server)
» Starburst (later DB2)

Completing the Physical Query Plan

» Choose algorithm for each operator
How much memory do we have ?
Are the input operand(s) sorted ?

» Access path selection for base tables
» Decide for each intermediate result:

To materialize
To pipeline

Access Path Selection

» Access path: a way to retrieve tuples from a table
A file scan
An index plus a matching selection condition

» Index matches selection condition if it can be used to
retrieve just tuples that satisfy the condition
Example: Supplier(sid,sname,scity,sstate)

B+-tree index on (scity,sstate)
matches scity=‘Seattle’
does not match sid=3, does not match sstate="WA’

Access Path Selection

» Relation: Supplier(sid,sname,scity,sstate)
» Selection condition: sid > 300 A scity=‘Seattle’

» Indexes: B+-tree on sid and B+-tree on scity

» Which access path should we use?

We should pick the most selective access path

Access Path Selectivity

» Access path selectivity:
number of pages retrieved if we use this access path
Most selective retrieves fewest pages

» As we saw earlier, for equality predicates:
Selection on equality: o,_,(R)

V(R,a) = # of distinct values of attribute a
1/V(R,a) |is thus the reduction factor
Clustered index on a: cost|B(R)/V(R,a)
Unclustered index on a: cost{ T(R)/V(R,a)

(we are ignoring 1/O cost of index pages for simplicity)

Materialize Intermediate Results b/w Operators

ﬁashTable <SS \
repeat read(R, x)
y < join(HashTable, x)
write(V1, y)

HashTable € T

Vl repeat read(V1,y)
z < join(HashTable, y)
write(V2, z)

HashTable € U

/< \ repeat read(V2, z)
u €< join(HashTable, z)
\ write(Answer, u) /

Convention of the book: build relations on the left.

Materialize Intermediate Results b/w Operators

Question in class
Given B(R), B(S), B(T), B(U)

» What is the total cost of the plan ?
Cost =

» How much main memory do we need ?
M =

Pipeline Between Operators

‘\

/ \ N 0 /HashTabIel <S \

HashTable2 € T
HashTable3 €< U

repeat read(R, x)
y € join(HashTablel, x)
z € join(HashTable2, y)

u €< join(HashTable3, z)

/< \ \ write(Answer, u) /

Convention of the book: build relations on the left.

Pipeline Between Operators

Question in class
Given B(R), B(S), B(T), B(U)

» What is the total cost of the plan ?
Cost =

» How much main memory do we need ?
M =

\

Pipeline in Bushy Trees

T \
/ \ \\\\\)< /(\
Z Moo\ V

N

%N\\ /k\

I T S R

Example "Star Schema'"

v
Pid Name
Customers Purchases 00143 Banana
Cid | ... Cid | Pid Store
Alice | ... Alice | 00143 | U-district
small
Stores
small
—»| Shame
U-district
small

big

Possible Naming Confusion

Build relations,
fit all in main
memory at the

: Probe relation,
same time

too big for
main memory

Right-deep plan

Convention in the book and in this class!
See our textbook example 16.31 p.818

main memory

Note that you may find the same
evaluation strategy (all 3 build
relations in main memory) at other
places depicted as above. Reason is
that build and probe are reversed.
Hence they call this a left-deep plan.
Don't get confused, just so you know.

Types of Join Trees

intermediate results in main
memory and thus pipelined

each too big for
main memory

Left-deep plan Right-deep plan

E.g. good for "non-expansive" joins E.g. good for "expansive" joins

Both are called "linear plans”

Convention in the book and in this class!

Def. "expansive join": |R X S|>max(|Al,|B])
Source: [Stocker et al. ICDE 2001]

Example

Logical plan > M =101
n blocks/
> U(y,z)
/ \ 10,000 blocks
R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Naive evaluation:

» 2 partitioned hash-joins

» Cost: [3B(R) + 3B(S) + n] + [3n + 3B(U)]
= 3B(R) + 3B(R) + 3B(U) + 4n
= 75,000 + 4n

Example

Logical plan > M =101
n blocks/
> U(y,z)
/ \ 10,000 blocks
R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Smarter:

» Step 1: hash R on x into 100 buckets, each of 50 blocks; to disk
» Step 2: hash S on x into 100 buckets, each of 100 blocks; to disk

» Step 3: read each R. in memory (50 buffer) join with S, (1 buffer);
hash result on y into 50 buckets (50 buffers) -- here we pipeline

» Cost so far: 3B(R) + 3B(S)

Example

Logical plan > M =101
n blocks/
> U(y,z)
/ \ 10,000 blocks
R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Continuing:

» How large are the 50 buckets ony ? Answer: n/50.

» If n <=50 then keep all 50 buckets in Step 3 in memory, then:
» Step 4: read U from disk, hash on y and join with memory

» Total cost: 3B(R) + 3B(S) + B(U) = 55,000

Example

Logical plan > M =101
n blocks/
> U(y,z)
/ \ 10,000 blocks
R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Continuing:

» If 50 < n <= 5000 then send the 50 buckets in Step 3 to disk
Each bucket has size n/50 <= 100

» Step 4: partition U into 50 buckets

» Step 5: read each partition and join in memory

» Total cost: 3B(R) + 3B(S) + 2n + 3B(U) = 75,000 + 2n

Example

Logical plan >
n blocks/
> U(y,z)
/ \ 10,000 blocks
R(w,x) S(x,y)

5,000 blocks 10,000 blocks

Continuing:

» If n > 5000 then materialize instead of pipeline
» 2 partitioned hash-joins

» Cost 3B(R) + 3B(S) + 4k + 3B(U) = 75000 + 4n

M=101

Example in pictures 1

50 blocks per bucket /IVI=101 . /M=101
/ 100 blocks per bucket 50) 50
\ keep in memory
o [
= |
/- -
1
WJ J \ﬂ

1 ——
Cost: 3 B(R) -
100 ([C—1

B(S)=10,000

Cost: 3 B(S) B(U)=10,000
Cost: 1 B(U)
If n < 50: 3B(R) + 3B(S) + B(U)

Source: Variation on example 16.36 from book; all cost units are in "blocks" = 1/0

Example in pictures 2

M=101 1-100 blocks per bucket ~ M=101

50 blocks per bucket

/s N (N
/ 100 bIocks\per bucket 1 S 50
2 1 -
I D T >
= 50 L
PE P
\Tﬂ 20 Y, Cost: 2 n \ﬂ)
B(R)=5,000 1=
. 1T
Cost: 3 B(R) - - 7
1 Sﬁ|| c_al!ed . c e
B(S)=10,000 pipelining —
Cost: 3 B(S) B(U)=10,000
Cost: 3 B(U)

If 50 < n < 5000: 3B(R) + 3B(S) + 2n + 3B(U)

Source: Variation on example 16.36 from book; all cost units are in "blocks" = 1/0

Example in pictures 3

50 blocks per bucket /IVI=101 . /M=101
/ 100 blocks per bucket 100 ‘
\
{7
— (= | /0
= 100 | ——=]
[& £ —
\Tﬂ Y, Cost: 4 n @
Cost: 3 B(R) - g ——
I
100 |[—— .
nomore 100]
B(S)=10,000 pipelining
Cost: 3 B(S) B(U)=10,000

Cost: 3 B(U)

If 5000 < n: 3B(R) + 3B(S) + 4n + 3B(U)

Source: Variation on example 16.36 from book; all cost units are in "blocks" = 1/0

Outline

» Search space

» Algorithm for enumerating query plans

» Estimating the cost of a query plan

Computing the Cost of a Plan
» Collect statistical summaries of stored data
» Estimate size in a bottom-up fashion

» Estimate cost by using the estimated size

Statistics on Base Data

» Collected information for each relation
Number of tuples (cardinality)
Indexes, number of keys in the index
Number of physical pages, clustering info
Statistical information on attributes

Min value, max value, number distinct values

Histograms
Correlations between columns (hard)
» Collection approach
periodic
using sampling

Size Estimation Problem

S = SELECT list
FROM R1, ..., Rn

WHERE cond; AND cond, AND ... AND cond,

Given T(R1), T(R2), ..., T(Rn)
Estimate T(S)

How can we do this ? Note: doesn’t have to be exact.

Remark: T(S) £ T(R1) x T(R2) x ... x T(Rn)

Selectivity Factor

» Each condition "cond" reduces the size by some factor
called selectivity (factor)

selection
|0(R)]
sel = R]
join
| =|RD<IS|
" IR x S|

» Assuming independence, multiply the selectivity factors

Example

SELECT * R(A,B)
FROM R,S, T S(B,C)
WHERE R.B=S.B and S.C=T.C and R.A<40 T(C,D)

T(R) = 300, T(S) =2000, T(T) = 100
Selectivity of R.B=S.B is 1/3
Selectivity of S.C=T.Cis 1/10
Selectivity of RA<40is %2

What is the estimated size of the query output ?

Rule of Thumb

» If selectivities are unknown, then:
selectivity factor = 1/10
[System R, 1979]

Selectivities from Statistics

» ConditionisA=c /* value selection onR */

Selectivity =

1/V(R,A)

» ConditionisA<c /*range selectiononR */

Selectivity =

(c - Low(R, A)) / (High(R,A) - Low(R,A)) T(R)

T i, // T(R)
]
B S

Low C High

» ConditionisA=B /*RX, oS */

Selectivity =

1/ max(V(R,A),V(S,A))

(will explain

next)

Selectivity of R X,_g S

R Assumption:

I

« if V(R,A) = V(S,B),

S
—[

A A OWONPEFEP R

Conclusion 1:
 AtuplefromRjoi

Containment of values:

then

the set of A values of R
is subset of B values of S

« Here: {1,2,3}C{1,2,3,4}

When does this hold for sure?

ns with exp-

W W W INDNDNDNDNRRERIPD

ected|T(S)/V(S,B)

tuples from S

T(R) = 10 T(S)=6 |
V(R,A) =3 V(S,B) = 4 Conclusion 2:

 Expected join size is

T(S) T(R) / V(S,B)

|IRx S| =60 _ _
|IRX,.5 S| =12 sel, =12/60 = 1/5 Why different?

=12.5

Selectivity of R X,_g S

R S Assumption:

A B Containment of values:
lye—T11 « if V(R,A) = V(S,B), then
1 \ 1 the set of A values of R
1 \ ; is subset of B values of S
1 3 Here:{1,2,3} C{1,2,3,4}
1 4 * Holds for sure if Ain R is a foreign
1 key on B in S (not the case here)
1 | differentdistribution, conclusion 1:
2 same simplified statistics .)
 Atuple from R joins with exp-
3 \ ected|T(S)/V(S,B)| tuples from S
T(R) = 10 T(S) =6
V(R,A) =3 V(S,B) =4 Conclusion 2:
 Expected join size is
T(S) T(R) / V(S,B)|=12.5
: E ;(428 ng 26} sel,, = 12/60 = 0.43 Expected sel. = 1/V(S,B) = 0.25

Selectivity of R X,_g S

R S Assumption:
A B Containment of values:
1 ri « ifV(R,A) = V(S,B), then
2 2 the set of A values of R
; \ 2 is subset of B values of S
5 4 Here:{1,2,3} C{1,2,3,4}
2 4 * Holds for sure if Ain R is a foreign
2 key on B in S (not the case here)
2 | different distribution, conclusion 1:
2 | samesimplified statistics A tuple from R joins with exp-
3 \ ected|T(S)/V(S,B)| tuples from S
T(R) = 10 T(S) =6
V(R,A) =3 V(S,B) =4 Conclusion 2:
 Expected join size is
T(S) T(R) / V(S,B)|=12.5
: E ;ils S|62 10]‘ sel, =12/60=0.17 Expected sel.. = 1/V(S,B) = 0.25

Assumptions

» 1: Containment of values: if V(R,A) < V(S,B), then the set
of A values of R is included in the set of B values of S

Note: this indeed holds when A is a foreign key in R, and B is a
keyinS

» 2: Preservation of values: for any other attribute C,
V(RX,_5 S, C) =V(R,C) if Cis attribute of R

Size Estimation for Join

Example:

» T(R) = 10,000, T(S)=20,000
» V(R,A) =100, V(S,B) =200

» How largeisRX, S ?

Histograms

» Statistics on data maintained by the RDBMS
» Makes size estimation much more accurate

hence, cost estimations are more accurate

Histograms

Employee(ssn, name, age) T(Employee) = 25,000

V(Employee, age) = 50
min(age) = 18
max(age) = 77

0age=18(Emp|Oyee) =7 c)-age>28 and age<35(Emp|Oyee) =7

Histograms

Employee(ssn, name, age) T(Employee) = 25,000

V(Employee, age) = 50
min(age) = 18
max(age) = 77

0age=18(Emp|Oyee) =7 c)-age>28 and age<35(Emp|Oyee) =7

\J \J
Estimate = 25,000 / 50 = 500 Estimate = 25,000 * 6 / 60 = 2,500

Histograms

Employee(ssn, name, age) T(Employee) = 25,000
V(Employee, age) =
min(age) =

max(age) =

O,ge-15(EMPployee) = 2 Oage>28 and age<asEMPployee) =7

Age: 10..19 | 20..29 | 30-39 | 40-49 | 50-59 > 60

Tuples 200 300 5,000 | 12,000 | 6,500 500

Histograms

Employee(ssn, name, age) T(Employee) = 25,000
V(Employee, age) =
min(age) =
max(age) =

age 18(Emp|0yfe) =7 c)-age>28 and age<35(Emp|Oyee) =7
Age: 10..19 | 20..29 | 30-39 40-49 50-59 > 60
Tuples 200 3800 5000 | 12,000 | 6,500 500

Estimate = 20

|

=

Estimate =

1*80 + 5*500 = 2580

Types of Histograms

» How should we determine the bucket boundaries in a
histogram ?

» Equi-Width
» Equi-Depth

also called equi-height or equi-sum
» Compressed

Histograms

9
8 8
7
6
5
4 4
3 3
2
1 L1
°I
56789

10 11 12 13 14 15 16
Data values (V = 16)

of appearances of each value

- e

S
w—w

Source: Numerical values slightly varied from: 100
https://grape.ics.uci.edu/wiki/public/wiki/cs222-2010-fall-lecture17 (March 2011)

Histograms

1. Equi-Width Histogram
5 19 27 14

9
8 8
7
6
5
4 4
3 3
2
1 1L
0I

5 6 7 8 9

10 11 12 13 14 15 16
Data values (V = 16)

of appearances of each value

- e

SR
w—w

Source: Numerical values slightly varied from: 101
https://grape.ics.uci.edu/wiki/public/wiki/cs222-2010-fall-lecture17 (March 2011)

Histograms

2. Equi-Depth Histogram (also Equi-Height / Equi-sum)
16 16 16 17

Note: does not always
have to be the same
number per bucket,

we just try to make it
approx. the same

9
8 8
7
6
5
4 4
3 3
2 Why
1 better?
O I | | | | | | | | |
5 6 7 8 9

10 11 12 13 14 15 16
Data values (V = 16)

of appearances of each value

- e
SR
w_w

3. Compressed: store separately some highly frequent values: e.g. (10,9)

Source: Numerical values slightly varied from:
https://grape.ics.uci.edu/wiki/public/wiki/cs222-2010-fall-lecture17 (March 2011) X

Histograms

Employee(ssn, name, age)

Equi-width
Age: 10..19 | 20..29 | 30-39 40-49 50-59 > 60
Tuples 200 300 5000 | 12,000 | 6,500 500
Equi-depth
Age: 10..34 | 35..41 | 42-45 46-48 49-54 >55
Tuples | 4,200 4,100 4,200 4,300 3,900 4,300

Difficult Questions on Histograms

» Small number of buckets

Hundreds, or thousands, but not more
WHY ?

» Not updated during database update, but recomputed
periodically

WHY ?

» Multidimensional histograms rarely used
WHY ?

Summary of Query Optimization

» Three parts:
search space, algorithms, size/cost estimation

» ldeal goal: find optimal plan. But

Impossible to estimate accurately
Impossible to search the entire space

» Goal of today’s optimizers:
Avoid very bad plans

Outline

» Search space

» Algorithm for enumerating query plans

» Estimating the cost of a query plan

» Some extra slides (optional)

The following slides are taken from this German Database textbook. They may
provide some alternative intuitions for some of the operators. Topics:
Hash Join / value of 2 passes / Merge join / External sort / semi-join / operators

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Partition relations into buckets

Bucket 1 Bucket 2 Bucket 3

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung" 107
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Partitioned Hash Join: Partitioning

Partition Partition
h(R.A) h(S.A)

93 /]
@ 09 rcceive receive

Send Send

R S

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Partitioned Hash Join: Build /Probe

=

Load blocks from P1 * :

91 ® o H-:
e0® - Haahtablg

: ==
Partitio‘ ;‘ %

h(R.A) probe
O B

—
E—

op
.
o

Send Send

R S

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Comparing Tuples "on the Diagonal”

R LSV
Ay | Ao By | B>

h(As)

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Comparing Tuples "on the Diagonal”

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung" 111
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Merge-Join

» Assume R and S are already sorted:

Then each relation needs to be read only once
Beispiel:

R S
A B
0] Zn 2 5
7 6
7 7
8 8
8 8
10 | —| 11
—

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97

17

3
5

27

16
2
99
13

N

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

) D

97

17 = 97
3 \

e 17
27 3
16
2
99

13
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97
17
3
5
27
16
2
99
13

N

sort

17

97

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97
17
3
5
27
16
2
99
13

N

sort

17

97

17
97

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97

17

3
5

27

27

16

16
2
99
13

N

17
97

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97
17
3
5
27
16
2
99
13

sort

16

27

N

17
97

16
27

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97 3
17 2 17
3 97
- 99 :

27 13 16
16 27
2

99
13

N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

97
17
3
5
27
16
2
99
13

N

sort

13

99

3
17
97

5
16
27

2
13

99
N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

N

merge

£ 3
17
97

/
'\

5
16
27
T 2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

merge

£ 3
17
97

N

/
'\

5
16
27
T 2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

2

merge

N

—

£ 3
17
97

5
16
27

2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

2

W

D

merge

17

3
17

\

— 5

97

13

N

5
16
27

2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

D

or W N

N

merge

17

3
17

16

13

97
5

- 16
27
2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sorting

N

17

3
17

16

~13

97
5

- 16
27
2
13
99

N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

O merge

@\

N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

O merge

3
17
97

5
o |
27

2

13

99
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

D

2 = 3
17
97

5
o |
27
2
13

99
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

O - Important: load from A
green run (i.e. run, from

) . which the object comes) 3

17
97
5
16
27
2
13
99

N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

D

2 3
17
97
5
oMl
7/
2
13

99
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

D

2 3
3+ 17
97
5
16
27
2
13
99
N N———

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

D

2 3
3 17
97

5
oM
27
2
13

99
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

External Sort w/ Heap-Priority Queue

5
2 / 3
3 17
97

5
ONF

27
2
13

99
N N

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

R X S (Natural Join)

R S

A |B |C D |E

a; by |c C; |di |e& RX>

ay by [c C; [dy |e A B |C |D [F
az |bs |cg | X |c, |ds |es | =21 [P1 |G dy |&
as |bs |G cs |d, |eq az |bz [cy [di [
as |bs |¢c3 c; |ds |es as |bs [c3 |dy [
ag |be |Ca Cg |de |€6

a; [b; [ce cs [d; |&

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

RXS=RNX (S xII.R)
15 attributiﬁllyn

R X (S ¥M(R))
A I8 Jc Jo Je |
a, b1 C, d1 e,
a3 b3 C]_ d]. el
a; |be Jc Jd Je S % M(R)
g(l) 6 attribute values C I D E
A C ¢, dl €,
Cl C, d €,
G 4 attribute values _ >4/;7
Cs g
Cc \
N
" S
y B C C D E
a, b1 3 C, d1 €,
a, bz c, C3 dz e,
a, b3 ¢, Cy d3 e,
d, b4 G CS d4 ez
a, b5 c c, d5 SH
Lo, 1b, lc G 1d. le

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Alternative: RX S = (RX S) X S

—]
~—_

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfiihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

Logical Algebra — Physical Operators

NestedLoop; ,_< &

/\

R [Bucket]

S

Notice: in this book, the build
relation is on the right (just a
convention, not essential)

IndexJoing ,_< 5

/TN

R [Hash ;| Tree ;]

S

Mergeloin; ,_. 5

/\

[Sort;, ,] [Sort,,]

%S.B R S

Hashloing , <

7\
R S

Source: Slides taken and adapted from: Kemper, Eickler: "Datenbanksysteme - Eine Einfihrung"
http://www3.in.tum.de/research/publications/books/DBMSeinf/EIS_4 Auflage/index.html (March 2011)

