Version March 15, 2011

Introduction to Database Systems
CSE 444, Winter 2011

Lecture 20: Operator Algorithms

Where we are / and where we go

Data Storage and
Indexing
lecture 16

Homework 2 due

Query Processing

Overview
Database Tuning Relational Algebra lecture 19
Feb 14 . i
Project 3 due
Query
Feb 21 No class Operator Optimization

(Presidents Day) Algorithms
Homework 3 due

Feb 28 || Query Optimization || Query Optimization

Why Learn About Operator Algorithms?

» Implemented in commercial DBMSs
DBMSs implement different subsets of known algorithms

» Good algorithms can greatly improve performance

» Need to know about physical operators to understand
guery optimization

Cost Parameters

» In database systems the data is on disk
» Cost = total number of 1/Os

» Parameters:
B(R) = # of blocks (i.e., pages) for relation R
T(R) = # of tuples in relation R
V(R, a) = # of distinct values of attribute a
When a is a key, V(R,a) = T(R)
When a is not a key, V(R,a) can be anything < T(R)
M = # of max. pages in main memory

Cost

» Cost of an operation = number of disk I/Os to
Read the operands
Compute the result

» Cost of writing the result to disk is not included
Need to count it separately when applicable

Cost of Scanning a Table

» Result may be unsorted: B(R)

» Result needs to be sorted: 3 B(R)
We will discuss sorting later

Outline for Today

» Join operator algorithms
One-pass algorithms (Sec. 15.2 and 15.3)
Index-based algorithms (Sec 15.6)
Two-pass algorithms (Sec 15.4 and 15.5)

Note about readings:

In class, we will discuss only join operator algorithms
(because other operators are easier)

Read the book to get more details about these algos and about
algots for other operators

Basic Join Algorithms

» Logical operator:
Product(pname, cname) i Company(cname, city)

» Propose three physical operators for the join, assuming
the tables are in main memory:
Hash join
Nested loop join
Sort-merge join

1. Hash Join

Hash join: RIX S
» Scan R, build buckets in main memory

» Then scan S and join
» CostB(R) + B(S)

» One-pass algorithm when B(R) = M

By “one pass”’, we mean that the operator reads its operands
only once. It does not write intermediate results back to disk.

1. Hash Join Example Patient >< Insurance

Patient(pid, name, address)
Insurance(pid, provider, policy nb)

Two tuples
per page
// .
— Disk
Patient Insurance

2 | ‘Blue’ | 128
4 | ‘Prem’ 432

4 | ‘Prem’ 343
3| ‘GrpH” | 554

//

1. Hash Join Example Patient >< Insurance

Showing only pid; note Memory M = 21 pages

a page contains 2 tuples

Disk
2

o

./J/

atient &nsurance
2 14

413
28
819

66
13
//

1. Hash Join Example Patient >< Insurance

Step 1: Scan Patient and create hash table in memory

Memory M = 21 pages

Hash h: pid % 5

— o5l [Alelia]

\ D
Patient Insurance §
2 | 4 6|6
4 | 3 1|3 Input buffer
2| 8
819

1. Hash Join Example

Patient o< Insurance

Step 2: Scan Insurance and probe into hash table

//
\

Disk

T
D

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

Memory M = 21 pages

Hash h: pid % 5

alel2]

2

4

Input buffer

VE

Output buffer

/

write to disk

1. Hash Join Example

Patient o< Insurance

Step 2: Scan Insurance and probe into hash table

//
\

Disk

T
D

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

Memory M = 21 pages

Hash h: pid % 5

1lel2]

2

4

Input buffer

14 4

Output buffer

1. Hash Join Example

Patient o< Insurance

Step 2: Scan Insurance and probe into hash table

//
\

Disk

T
D

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

Memory M = 21 pages

Hash h: pid % 5

alsl2]

4

3

Input buffer

4 4

Output buffer

Keep going until read all of Insurance

Cost:

B(R) + B(S)

1. Hash Join Details

Open() {
H = newHashTable();

R.Open();
X = R.GetNext();
while (x != null) {
H.insert(x);
X = R.GetNext();
}
R.Close();
S.Open();
buffer=1[1];

1. Hash Join Details

GetNext() {

while (buffer ==[]) {
x = S.GetNext();
if (x==Null) return NULL;
buffer = H.find(x);

}

z = buffer.first();

buffer = buffer.rest();

return z;

1. Hash Join Details

Close() {
release memory (H, buffer, etc.);

S.Close()

}

2. Nested Loop Joins

Tuple-based nested loop RNXS
» Ris the outer relation, S is the inner relation

for each tuple rin R do
for each tuple sin S do
if r and s join then output (r,s)

» Cost: B(R) + T(R) B(S)
» One-pass only over outer relation
But S is read many times

2. Page-at-a-time Refinement

for each page of tuples rin R do
for each page of tuples sin S do
for all pairs of tuples
if r and s join then output (r,s)

» Cost: B(R) + B(R) B(S)

e

2. Nested Loop Example Patient > Insurance

//
\

Disk

T
I

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

- Input buffer for Patient

2

4

Input buffer for Insurance

2>

Output buffer

2. Nested Loop Example Patient > Insurance

//
\

Disk

T
I

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

- Input buffer for Patient

4

3

Input buffer for Insurance

Output buffer

2. Nested Loop Example Patient > Insurance

//
\

Disk

T
I

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

- Input buffer for Patient

2 | 8 | Input buffer for Insurance

Keep going until read .
all of Insurance 2

Then repeat for next Output bufter

page of Patient... until end of Patient

Cost: B(R) + B(R) B(S)

2b. Nested-block join (Nested-loop join)

. Book example 15.4
1x5 ;OO M=M-1=100 i
r \M=101 pages CostR: 500
: o Cost S: 5000 = 521000
_— SUM: 5500
B(R) + B(R)/M*B(S)
B(R)=500 B(S)=1000 500 + (500/100)*1000 = 5500
1x10°100
s M=101 pages Cost S: 1000
100 Cost R: 5000 = 10500
R _—| " SUM: 6000
10x500°1 F 1
\/
B(S) + B(R)/M*B(S)

B(S)=1000 B(R)=500 1000 + (1000/100)*500 = 6000

X

3. Sort-Merge Join

Sort-merge join: RNXS

» Scan R and sort in main memory
» Scan S and sort in main memory
» Merge Rand S

» Cost]B(R) + B(S)
» One pass algorithm when B(S) + B(R) = M
» Typically, thisis NOT a one pass algorithm

3. Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

/
\

Disk

T
D

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

Memory M = 21 pages

3. Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Step 2: Scan Insurance and sort in memory

Memory M = 21 pages

— o [alalislal STl e le]

Patient
Insurance 11212133 all2
214 6|6
68| 8|9
4 | 3 1|3
2 8
819

3. Sort-Merge Join Example

Step 1: Scan Patient and sort in memory

Step 2: Scan Insurance and sort in memory
Step 3: Merge Patient and Insurance

//
\

Disk

T
D

Patient

Insurance

2

4

66

13

4
2
3

3
3
9

Memory M = 21 pages

1

2

2

3

3

4

416

6

8

8

9

E

Output buffer

3. Sort-Merge Join Example

Step 1: Scan Patient and sort in memory
Step 2: Scan Insurance and sort in memory
Step 3: Merge Patient and Insurance

Memory M = 21 pages

— o [ala]is]alisTelsls

Patient Insurance
1121(|123(/3(4(/4]|6
2 | 4 6|6 N BE
413]/1]3 . 2
> | g Output buffer
3| g Keep going until end of first relation

Outline for Today

» Join operator algorithms
One-pass algorithms (Sec. 15.2 and 15.3)
Index-based algorithms (Sec 15.6)
Two-pass algorithms (Sec 15.4 and 15.5)

Review: Access Methods

» Heap file
Scan tuples one at the time

» Hash-based index
Efficient selection on equality predicates
Can also scan data entries in index

» Tree-based index

Efficient selection on equality or range predicates
Can also scan data entries in index

Index Based Selection
» Selection on equality: o__(R)

» V(R,a) = # of distinct values of attribute a

» Cost Clustered index on a: B(R)/V(R,a)

» Cost Unclustered index on a: | T(R)/V(R,a)

» Note: we ignored 1/O cost for index pages

Expected
number of pages

Expected
number of tuples

Index Based Selection

» Example: | T(R) =100,000 Cost of s__ (R) =7

B(R)= 2,000
V(R,a)= 20
» Table scan: B(R)=2,000 1/Os Expected # of
] pages for expected
» Index based selection # of tuples

If index is clustered: B(R)/V(R,a) = 100 1/Os

If index is unclustered: T(R)/V(R,a) = 5,000 1/Os

Expected
» Lesson # of tuples

Don’t build unclustered indexes when V(R,a) is small,
i.e. many tuples with same attribute values a (here 5,000)!

4. Index Nested Loop Join

Index-nested loop join RXS
» Assume S has an index on the join attribute

» Iterate over R, for each tuple fetch corresponding tuple
(s) from S

» Cost
If index on S is clustered: | B(R) + T(R) B(§)/V(S,a)
If index on S is unclustered: | B(R) + T(R] T(S)/V(S,a)

Expected number of
tuples from S that join
with a tuple from R

Outline for Today

» Join operator algorithms
One-pass algorithms (Sec. 15.2 and 15.3)
Index-based algorithms (Sec 15.6)
Two-pass algorithms (Sec 15.4 and 15.5)

Two-Pass Algorithms

» What if data does not fit in memory?
» Need to process it in multiple passes

» Two key techniques
1. Hashing
2. Sorting

5. Two-Pass Join Alg. based on Hashing

» ldea: partition a relation R into buckets, on disk
» Each bucket has size = B(R)/M pages

one bucket

Relation R Partitions
S— e S ——
1 1
2 L —]

5 INPUT / D
> fu“?:%%n .. \\
h M_1 e o o
B(R) M-1
~ N~
Disk M main memory buffers Disk

Does each bucket fit in main memory ?
Yes if B(R)/M < M, i.e. B(R) = M?

5. Partitioned (Grace) Hash Join

Hash Join RX S

» Step 1:
Hash S into M-1 buckets
Send all buckets to disk
» Step 2
Hash R into M-1 buckets
Send all buckets to disk

» Step 3

Join every pair of buckets

5. Partitioned Hash Join

» Partition both relations using hash function h

» R tuples in partition i will only match S tuples in
partition /.

on join attributes

Original / .
Relation Partitions
— ouTPuT ——
1
INPUT 2
hash 2
> function . °
h M-l e o o
M-1
~_ N~
Disk

M main memory buffers Disk

5. Partitioned Hash Join

» Read in partition of R, hash it using h, (= h)
Build phase

» Scan matching partition of S, search for matches
Probe phase

Partitions

of R&S Hash table for partition Join Result
—— hash S, (< M-1 pages) S
fct []
h, | | ° s e .
e e o éhz . o
- Input buffer Output .
== for R, buffer U,

Disk M main memory buffers Disk

5. Partitioned Hash Join

» Cost:3B(R) + 3B(S)
» Assumption: min(B(R), B(S)) = M?

T

What is max. size of smaller table? /Calculate cost with nested block join
e 1 Gb main memory = 23°b for two 16 Tb tables: Cost = B + B2/M
e 64 Kb blocksize= 2%b * B(R) =16 Tb / 64 Kb = 228

Then M (# blocks) = 214 =16 K o Cost =228 + 242 =~ 242
ThenB<=M?= 228 e Cost =214 B(R) = 16 K B(R)

Then total size = 244 b =16 Tb vs. 6 B(R) for Part. Hash Join

A/ o J

Example 15.5 in the
book says 4 Tb, b/c
"214 =64 K" ??? ®

External Sorting
» Problem: Sort a file of size B with memory M

» Where we need this:

ORDER BY in SQL queries
Several physical operators
Bulk loading of B+-tree indexes.

» Sorting is two-pass when B < M?

External Merge-Sort: Step 1

Step 1: Load M pages in memory, sort

| F—___|Size M pages | |

Disk

Disk Main memory

Each run is of length M pages
(maximal M-1 runs)

External Merge-Sort: Step 2

Step 2: Merge M — 1 runs into a new run
Result: runs of length M (M — 1) = M?

-~ |Input 1

Y

\

Input 2

Y

Output

-

Input M-

1

Main memory

Cost: read + write + read:
Assumption: B(R) = M?

3B(R)

6. Two-Pass Join Alg. based on Sorting

Sort-based Join RX S

» Step 1: sort both R and S on the join attribute:
Cost: 4B(R)+4B(S) (because need to write to disk)

» Step 2: Read both relations in sorted order, match
tuples
Cost: B(R)+B(S)
» Total cost;5B(R)+5B(S)
» Assumption: B(R) = M?, B(S) = M?

6. Two-Pass Join Alg. based on Sorting

Sort Merge Join RIS
» If B(R) + B(S) < M?

» If the number of tuples in R matching those in S is small
(or vice versa)

» We can compute the join during the merge phase

» Total cost:|3B(R)+3B(S)

Summary of Join Algorithms

» Nested Loop Join:|B(R) + B(R)B(S)/M
Assuming block-at-a-time refinement
With page-at-a time, the formula would be: B(R) + B(R)B(S)

» Hash Join:| 3B(R) + 3B(S)
Assuming: min(B(R), B(S)) = M?

» Sort-Merge Join:| 3B(R) + 3B(S)
Assuming B(R)+B(S) = M?

» Index Nested Loop Join:| B(R) + T(R)B(S)/V(S,a)
Assuming S has clustered index on attribute attribute a

Summary of Query Execution

» For each logical query plan
There exist many physical query plans
Each plan has a different cost
Cost depends on the data

» Additionally, for each query
There exist several logical plans

» Next 3 lectures: query optimization

How to compute the cost of a complete plan?
How to pick a good query plan for a query?

