Version Feb 11, 2011

Introduction to Database Systems
CSE 444

Lecture 16: Data Storage and Indexes

NE 45th St NE 45th St NE 45th S\

' cow booK

cow bookends

cow books for kids
cow book database
cow book

15th Ave NE ‘

Haagendazs'

NE 43rd St

About 7,140,000 results (0.18 seconds)

Flowers.
& Restaura

COW BOOKS % | a

Have a look at our singular collection of selected books
exceptional. STORE INFORMATION. COW BOOKS/Naklt
www.cowbooks.jp/english.html - Cached - Similar

COW BOOKS - [Translate this page] 20d st
2011/2/5. Weekly Highlight and more... \ g
www.cowbooks.jp/ - Cached - Similar 11 Big Tme

Amazon.com: Moo Cow Book (9780689876837):
13 reviews - $12.71 - In stock
Here's a spiffy plush cow book with a squeeze-it moo, a
dazzling satin teeth, and four padded cloth pages of jaun}.
www.amazon.com > Books » Children's Books » Animals

w

4

@
Thaiger Room
v =

hipotie

exican G 1"

T
15th Ave NE

15th Ave NE

5]
Comic books published by Top Cow B e Campus Prowy
The comics you enter will be recorded into My Comic Bo
Top Cow. All Issues; In Stock. Display. Grouped by Title,
www.mycomicshop.com/search?pl=Top%20Cow - Cachq #sies | Xcoeoon

Apa
NE 40th St
947 1400

cow books | Flickr - Photo Sharing!

1 post - 1 author - Last post: Mar 30, 2007
This photo belongs to. pink_emmie_bat's photostream (6

books - Taco truck?! red bridge ... g
www.flickr.com/photos/indrasarrow/439722560/ - Cache(

\Cash Cow Books - Richmond, Virginia (VA) | Con}
sh Cow Books company profile in Richmond, VA. Ou

Cash Cow Books includes business information such ag
wwwXpanta.com/c/mtm9l6j/cash-cow-books - Cached

Database Management Systems (Third Edition)

If you are using the book and have found bugs or typos,
presentation or content, please send email. ...
pages.cs.wisc.edu/~dbbook/ - Cached - Similar

Where we stand

» How to use a DBMS as a:
Data analyst: SQL, SQL, SQL, ...
Application programmer: JDBC

Database admin: tuning, triggers, security

Transactions:
Concurrency

Midterm <

Data Storage and

Indexing

Control
Feb 7 lecture 14-15 lecture 16
Midterm review on s
the board
Query Processing
Overview
Feb 14 Database Tuning Relational Algebra

Project 3 due

No class

: : il
Massive-scale data analyst: Pig/MapReduce v

» How DBMSs work:
Transactions d/ today
Data storage and indexing

Query execution

» Databases as a service

Operator
Algorithms

Query
Optimization

Feb 28

Query Optimization

Query Optimization

Parallel and
Distributed
DBMSs

Mar 7

Pig Latin

TBA

Wrap-up

Mar 14

Final Exam

Thursday, March 17, 8:30am-10:20am, in class

Outline

» Storage model

Memory hierarchy

Typical System (bytes)

-

o
AN
(&)

-

o
AN
N

-
o
(o}

Price vs Speed

he

10° 106 103 100 103 10° 106 103 100 103

Access Time (seconds)

Access Time (seconds)

Outline

» Index structures (Section 14.1)
[Old edition: 13.1 and 13.2]

High-level overview: Indexes

A

salary

50k

id age | salary | other
006 | 19 | 50k
005 | 20 | 55k
004 | 25 | 50k
007 | 30 | 80k
002 |35 |75k
003 |35 | 70k
001 | 40 |65k

data file = index file

clustered (primary) index

s
55k

65k

70k

75k

80k

index file
unclustered (secondary) index

Database File Types

The data file can be one of:

» Heap file
Set of records, partitioned into blocks
Unsorted

» Sequential file

Sorted according to some attribute(s) called (sort) key

/

different from "primary key"!

Index

» A (possibly separate) file, that allows fast access to
records in the data file given a search key

» The index contains (key, value) pairs:
The key = an attribute value
The value = either a pointer to the record, or the record itself

again different from "primary key"!

Index Classification

» Clustered/unclustered
Clustered = records close in index are close in data
Unclustered = records close in index may be far in data

» Primary/secondary
Meaning 1: (Cow book)

Primary = is over attributes that include the primary key
Secondary = otherwise

Meaning 2: means the same as clustered/unclustered
(Stanford book)

» Organization: B+ tree or Hash table

Clustered /Unclustered

» Clustered
Index determines the location of indexed records

Typically, clustered index is one where values are data records
(but not necessary)

» Unclustered

Index cannot reorder data, does not determine data location
In these indexes: value = pointer to data record

Clustered Index

» File is sorted on the index attribute

» Only one per table

Index File
/—%

Data File

A

10

" 10

20

30

" 20

40

—_—
—

30

50

40

60

70

50

80

[/]]]

60

il

70

80

Unclustered Index

» Several per table

Index File
/—%

Data File

A

10

20

10

20

[A

30

20

30

20

20

30

30

10

30

/1\

20

10

T

30

Clustered vs. Unclustered Index

A

B+ Tre
J 0 DA\ (Index File) XK~ X
/8 N Datafiley /X N/ N/
Data Records Data Records
CLUSTERED UNCLUSTERED

More commonly, in a clustered B+ Tree index,
data entries are data records

Hash-Based Index Example

Example hash-based index Index File Hash function h1
on sid (student id) rm ~ .
5 20 h1(sid) = 00
This is a primary index
because it determines the S
order of indexed records B
H1 sid
50 22
In this case, data entries in the index s
are actual data records
. . hl(sid) =11
There is no separate data file 70 | 21 (sid)
80 19
This index is also clustered

Hash-Based Index Example 2

Index File Data File
h2(age) =00 - 10 | 21
18 20 20
\)<><

20
age H2) —
40 19

19

/
h2(age) =01
(age) 2 | 7 50 | 22
S BN 60 | 18
19 \ \

\

70 21

Secondary index S

Data entries in index are (key,RID) pairs

Unclustered index

Hash-Based Index

Good for point queries but not range queries

T~

)(/

h2(age) =00
age H2 zz
h2(age) = 01 :’

A/ARN

Another example

>

10

21

20

20

30

18

40

19

50

22

60

18

70

21

N
=

80

19

Another example of

of unclustered/secondary index

h1(sid) = 00

H1

hi(sid) = 11

clustered/primary index

sid

Outline

» B-trees (Section 14.2)
[Old edition: 13.3]

B+ Trees

» Search trees

» Idea in B Trees
Make 1 node = 1 block

Keep tree balanced in height

» Idea in B+ Trees
Make leaves into a linked list: facilitates range queries

B+ Trees Basics

» Parameter d = the degree

» Each interior node has d = m < 2d keys (except root)

30 | 120 | 240 Each node also
|] N has m+1 pointers
Keys k < 30 Keys 30=< k<120 Keys 120=< k<240 Keys 240< k

» Each leaf node hasd = m < 2d keys

40

40

50

60

/

N\

— Next leaf

/

50

N

60

Data records

B+ Tree Example

Find the key 40

=2
30
40<80 —1_ ~~
/
20 | 60 100 | 120 | 140
ZEERY ~
\
20<40=<60
10 [15| 18 20 1 30| 40 | 50 60 | 65 80 | 85 | 90
/ \ gl L 1A |/
\
30<40<40
y \ 4 ! \ 4
10 15 18 20 30 40 50 60 65 80 85 90

B+ Tree Design

» How large d ?

2d keys

» Example:

Key size = 4 bytes 80

Pointer size = 8 bytes —
Block size = 4096 bytes

» 2d x4 + (2d+1) x 8 <= 4096
» d=170

Searching a B+ Tree

» Exact key values:
Start at the root
Proceed down, to the leaf

» Range queries:
As above
Then sequential traversal

select name
from people
where age = 25

select name

from people

where 20 <= age
and age <= 30

B+ Trees in Practice

» Typical degree: 100. Typical fill-factor: 67%

average fanout = 133

» Typical capacities
[Height 1: 133! = 133 records]
Height 3: 1333 = 2,352,637 records
Height 4: 1334 =312,900,700 records

» Can often hold top levels in buffer pool
Level 1 = 1 page = 8 Kbytes
Level 2 = 133 pages = 1 Mbyte
Level 3 =17,689 pages = 133 Mbytes

80

Insertion 1n a B+ Tree

Insert (K, P)

» Find leaf where K belongs, insert

» If no overflow (2d keys or less), halt

» If overflow (2d+1 keys), split node, insert in parent:

parent parent
Kl | K2 | K3 | K4 | K5 K1l | K2 K4 | K5
—
PO | P1 | P2 P3 | P4 | P5 PO | PI | P2 P3| P4 | P5

» If leaf, keep K3 too in right node
» When root splits, new root has 1 key only

Insertion in a B+ Tree
Insert K=19
30
// —
20 | 60 100 | 120 | 140
| ~—
10 [15| 18 20 1 30| 40 | 50 60 | 65 80 | 85 | 90
/ \\ \ / \\ \ \ /
10 15 18 20 30 40 50 60 65 80 85 90

d=2

Insertion in a B+ Tree
After insertion
30

// —

20 | 60 100 | 120 | 140
/ /\ 8
10 [15| 18 | 19 20 1 30| 40 | 50 60 | 65 80 | 85 | 90
/ \\ \\ \\ j \\ \ \ /
10 15 18 19 20 30 40 50 60 65 80 85 90

d=2

Insertion in a B+ Tree
Now insert 25
30

// —

20 | 60 100 | 120 | 140
/ /\ 8
10 [15| 18 | 19 20 1 30| 40 | 50 60 | 65 80 | 85 | 90
/ \\ \\ \\ j \\ \ \ /
10 15 18 19 20 30 40 50 60 65 80 85 90

d=2

Insertion in a B+ Tree
d
After insertion
80
// ~|
20 | 60 100 | 120 | 140
pal B\ N~ ~
e -—
10 | 15| I8 | 19 20 [25| 30 [40 | 50 60 | 65 80 | 85 | 90
1 R I AN AWE p 4R / .
BAWIAR
10 '15 18 || 19 || 20 25 '30 40 50 I 60 65 80 85 90

2

Insertion in a .

B+ Tree

But now have to split |

30
// —
20 | 60 100 | 120 | 140
|\ N ~
10 [15| 18 | 19 20 1251 30 | 40| 50 60 | 65 80 | 85 | 90
/ \ \\\‘\\ j \\ \\\\ T\ /
10 15 18 19 20 25 30 40 50 60 65 80 85 90

Insertion in a B+ Tree
After the split
80

// ~

20 | 30 | 60 100 | 120 | 140
// / AN = \
10 [15] 18 [19 20 | 25 30 | 40 | 50 60 | 65 80 [85 [90
/ \\ \\ \\ j 7 \‘T \ | T /1l /1T
10 '15 18 || 19 || 20 25 30 40 50 60 65 80 85 90

Deletion from a B+ Tree
Delete 30
80

// ~

20 | 30 | 60 100 | 120 | 140
// / < o= \
10 [15] 18 [19 20 | 25 30 | 40 | 50 60 | 65 80 [85 [90
/ \\ \\ \\ j 7 \‘T \ | T /1l /1T
10 '15 18 || 19 || 20 25 30 40 50 60 65 80 85 90

Deletion from a B+ Tree

After deleting 30

May change to 80

40, or not | ~

20 | 30 | 60 100 | 120 | 140

// /l] \l = \
10 | 15 18 | 19 20 | 25 40 | 50 60 | 65 80 | 85 | 90
/ \\ \\\\ j 7/ N TTl\l T /| /1T
10 15 18 || 19 || 20 25 40 50 60 65 80 85 90

Deletion from a B+ Tree
Now delete 25
80

// ~

20 | 30 | 60 100 | 120 | 140
// / AN = \
10 [15] 18 [19 20 | 25 40 | 50 60 | 65 80 [85 [90
/ \\ \\\\ j 7/ N o | 1 A /1l /1T
10 '15 18 || 19 || 20 25 40 50 '60 65 80 &5 90

Deletion from a B+ Tree

After deleting 25

Need to rebalance: —

Rotate

20 | 30 | 60 100 | 120 | 140

m AN = \
10 {15] 18 [19 20 40 | 50 60 | 65 80 [85 [90
1R [N o | 1 A /1l /1T

10 15 || 18 || 19 || 20 40

N/

50

60

65

80

85

90

Deletion from a B+ Tree
Now delete 40
80

// ~

19 | 30 | 60 100 | 120 | 140
// / AN = \
10 | 15| 18 19 | 20 40 | 50 60 | 65 80 [85 [90
/\\\\ //// 7/\ o | 1 A /1l /1T
10 '15 18 || 19 || 20 40 50 60 65 80 85 90

Deletion from a |

After deleting 40
Rotation not possible

Need to merge nodes

/

B+ Tree

100 | 120

10

151 18

80

\

|

\

10

15

18

60 || 65

80

85

90

Deletion from a B+ Tree
Final tree
30
19 | 60 100 | 120 | 140
// / i T \
10 | 15| 18 19 | 20 | 50 60 | 65 80 [85 [90
/\\\\ ////\\=_+ /1l /71T
10 | 15 18 || 19 || 20 50 60 65 80 85 90

Summary of B+ Trees

» Default index structure on most DBMS

» Very effective at answering ‘point’ queries:
productName = ‘gizmo’

» Effective for range queries:
50 < price AND price < 100

» Less effective for multirange:
50 < price <100 AND 2 < quant< 20

Indexes in PostgreSQL

CREATE TABLE V(M int, N varchar(20), P int);
CREATE INDEX V1_N ON V(N)
CREATE INDEX V2 ON V(P, M)

CREATE NDEX VVV ON V(M, N)

CLUSTER V USING V2 @VZ clu@

