Introduction to Database Systems
CSE 444

Lecture 14-15
Transactions: concurrency control (part 2)

Outline

» Continuing on locking (18.3)

» Isolation Levels

» Concurrency control by timestamps (18.8)
» Concurrency control by validation (18.9)

2PL Review

» 2PL enforces conflict-serializable schedules

» But what if a transaction releases its locks and then

aborts?
T1 T2

L,(A); L,(B); READ(A, t)
t:=t+100
WRITE(A, t); U,(A)

L,(A); READ(A,s)

s:=5%2
WRITE(A,s);
L,(B); DENIED...
READ(B, t)
t:=t+100

WRITE(B,t); U,(B);
...GRANTED; READ(B,s)
s:=s%2
WRITE(B,s); UZ(A); UZ(B);
Now what? — aBort

Strict 2PL

» Strict 2PL: All locks held by a transaction are released

when the transaction is completed

» Ensures that schedules are recoverable

Transactions commit only after all transactions whose changes
they read also commit

» Avoids cascading rollbacks

locks 'T IPL

AN

locks 'T

Strict 2PL

Deadlock

» Transaction T1 waits for a lock held by T2;

» But T2 waits for a lock held by T3;

» While T3 waits for. . ..

> ...

» ...and T73 waits for a lock held by T1 !! Now what?

Deadlock: example

T1 T2 T3 T4
L(A)
R(A)
L(B)
W(B)
L(B)
L(C)
R(C)
L(C)
Waits-for graph L(B)

L(A)

Deadlock!

Most systems do deadlock detection

6

Deadlock prevention

T, requests a lock conflicting with T,
» Wait-die:
If T. has higher priority, it waits; otherwise it is aborted

» Wound-wait:
If T, has higher priority, abort T; otherwise T; waits

Conservative 2PL

» Acquire all locks at the beginning

Types of Locks

» Intuition: it’s ok for many Xacts to read the same element.

» Shared lock (S) — for reads

» Exclusive lock (X) — for writes

» Update lock (U) — initially S, possibly later upgrade to X

Mode X S U
X No No No
S No Yes Yes
U No Yes No

Granularity of Locks

» Multiple Granularity Locking
» Allows locking of different size objects (files, pages, records)

files

pages

records

Granularity of Locks

» Intention Locks: IS, 1X, SIX
Lock with appropriate intention locks top down.

Release bottom-up
Place top-down IS locks DB >
IS

Want to get S on this page

<€

L 1

10

Granularity of Locks

Mode | IS IX S [SIX| U X
IS Yes | Yes | Yes | Yes | No | No
IX Yes | Yes | No | No | No | No
S Yes | No | Yes | No | Yes | No

SIX Yes | No | No | No | No | No
U No | No | Yes | No | No | No
X No | No | No | No | No | No

11

Isolation Levels in SQL

» “Dirty reads”
SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

» “Committed reads”
SET TRANSACTION ISOLATION LEVEL READ COMMITTED

» “Repeatable reads”
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

» Serializable transactions
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

12

Choosing Isolation Level

» Trade-off: efficiency vs correctness

» DBMSs give user choice of level

' Read DBMS docs!

Beware!!

* Default level is often NOT serializable

» Default level differs between DBMSs

* Some engines support subset of levels!

13

1. Isolation Level: Dirty Reads

Implementation using locks:

» “Long duration” WRITE locks
A.k.a Strict Two Phase Locking (you knew that !)

» Do not use READ locks
Read-only transactions are never delayed

» Possible problems: dirty and inconsistent reads

14

2. Isolation Level: Read Committed

Implementation using locks:

» “Long duration” WRITE locks

» “Short duration” READ locks
Only acquire lock while reading (not 2PL)

» Possible problems: unrepeatable reads
When reading same element twice,
may get two different values

15

3. Isolation Level: Repeatable Read

Implementation using locks:

» “Long duration” READ and WRITE locks
Full Strict Two Phase Locking

» This is not serializable yet !!!

What could be the problem??

16

The Phantom Problem

» We've been looking at updates
What about insertions/deletions?

T1:
select count(*) from R where price>20

select count(*) from R where price>20

Solutions:
 Coarse locks (table level)
* Predicate locking (index locking)

T2:

insert into R(name,price)
values(‘Gizmo’, 50)

\

Ahal Phantom tuple!

17

[solation levels: Summary

Isolation Level Dirty Read Nonrepeatable Read Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

18

Beyond Locking

» Optimistic Concurrency Control

» Intuition:

There is overhead in locking, so if we don’t expect may
conflicts, we can sort of “wing it” and hope for the best ©

19

Timestamps

» Each transaction receives a unique timestamp TS(T)

» Could be:

The system’s clock
A unigue counter, incremented by the scheduler

20

Timestamps

Main invariant:

The timestamp order defines the
serialization order of the transaction

21

Main Idea

» For any two conflicting actions, ensure that their order is

the serialized order:

» In each of these cases
W, (X) . .. R (X)

R1(X) . . . Wr,(X) — Possible conflicts
W, (X) . .. W,(X)

» Answer: Check that TS(T1) < TS(T2)

When T2 wants to read X, r,(X), how do we
know T1, and TS(T1) ?

22

Timestamps

With each element X, associate:

4

RT(X) = the highest timestamp of any transaction that
read X

WT(X) = the highest timestamp of any transaction that
wrote X

C(X) = the commit bit: true when transaction with highest
timestamp that wrote X committed

If 1 element =1 page, these are associated with
each page X in the buffer pool

23

Time-based Scheduling

Note: simple version that ighores the commit bit

» Transaction wants to read element X

If TS(T) < WT(X) abort
Else read and update RT(X) to larger of TS(T) or RT(X)

» Transaction wants to write element X
If TS(T) < RT(X) abort

Else if TS(T) < WT(X) ignore write & continue (Thomas Write
Rule)

Otherwise, write X and update WT(X) to TS(T)

24

Details

Read too late:
» T1 wants to read X, and TS(T1) < WT(X)

STAIERT(Tl) STARET(TZ) WTEZ(X) . RTil(X)

Need to rollback T1!

25

Details

Write too late:
» T1 wants to write X, and TS(T1) < RT(X)

STAIERT(Tl) STARET(TZ) RTZE(X) . wTil(X)

Need to rollback T1!

26

Details

Write too late, but we can still handle it:

» T1 wants to write X, and
TS(T1) = RT(X) but WT(X) > TS(T1)

STAIERT(Tl) STARET(TZ) WTEZ(X) .. V\}Tl(X)

Don’t write X at all!

27

More Problems

Read dirty data:
» T2 wants to read X, and WT(X) < TS(T2)
» Seems OK, but...

START(T1) ... START(T2) ... W-,(X). . ABORT(T1)

If C(X)=false, T2 needs to wait for it to become true

28

More Problems

Write dirty data:
» T1 wants to write X, and WT(X) > TS(T1)
» Seems OK not to write at all, but ...

START(T1) ... STAERT(TZ) WETZ(X). : .)... ABOR';'(TZ)

If C(X)=false, T1 needs to wait for it to become true

29

Timestamp-based Scheduling

» When a transaction T requests R(X) or W(X), the
scheduler examines RT(X), WT(X), C(X), and decides one
of:

To grant the request, or
To rollback T (and restart) <—— With what timestamp?

To delay T until C(X) = true

30

Timestamp-based Scheduling

RULES including commit bit
» There are 4 long rules in Sec. 18.8.4

» You should be able to derive them yourself, based on the
previous slides

READING ASSIGNMENT: 18.8.4

31

Multiversion Timestamp

» When transaction T requests R(X) but WT(X) > TS(T), then
T must rollback

» ldea: keep multiple versions of X:
Xo Xegr Xigy - - -

TS(X,) > TS(X, ;) > TS(X,,) > . ..

» Let T read an older version, with appropriate timestamp

32

Details

» When W(X) occurs,
create a new version, denoted X, where t = TS(T)

» When R;(X) occurs,
find most recent version X, such that t < TS(T)

Notes:
WT(X,) =tand it never changes
RT(X,) must still be maintained to check legality of writes

» Can delete X, if we have a later version X,, and all active
transactions T have TS(T) > t1

33

Tradeotfs

» Locks:
Great when there are many conflicts
Poor when there are few conflicts

» Timestamps

Poor when there are many conflicts (rollbacks)
Great when there are few conflicts

» Compromise

READ ONLY transactions — timestamps
READ/WRITE transactions — locks

34

Concurrency Control by Validation

» Each transaction T defines a read set RS(T) and a write set
WS(T)
» Each transaction proceeds in three phases:
Read all elements in RS(T). Time = START(T)
Validate (may need to rollback). Time = VAL(T)
Write all elements in WS(T). Time = FIN(T)

Main invariant: the serialization order is VAL(T)

35

Avoid Rp,(X) — W(X) Conflicts

START(T1) ﬁ(Tl) FIN(T1)
T1: | Read phase Validate Write phase

conflicts

T2: | Read phase Validate ?

f

START(T2)

If RS(T2)NWS(T1) not empty and FIN(T1) > START(T2)

(T1 has validated and T1 has not finished before T2 begun)
Then ROLLBACK(T2)

36

Avoid W, (X) = W,,(X) Contlicts

START(T1) VAL(T1) FIN(T1)
T1: | Read phase Validate Write phase
Nnﬂicts
T2: | Read phase Validate Write phase ?
! T
START(T2) VAL(T2)

If WS(T2)WS(T1) not empty and FIN(T1) > VAL(T2)
(T1 has validated and T1 has not finished before T2 validates)

Then ROLLBACK(T2)

37

